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Numerical experiments can tell you how a parameter will 
influence your design’s performance. For example, the local 
changes to fan blade curvature shown may have a large 
influence on parameters of interest. 

But full order simulations can be very slow!

Motivation
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How can you use available solutions to predict future results?

How do you combine modeling and experience to make good predictions?

What’s the broader problem?
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ROMs solve this problem

ẇ + 𝐹 w = 0

w௡ାଵ − w௡

∆𝑡
+ 𝐹 w௡ = 0

𝑤௡ାଵ = 𝑤௡ + ∆𝑡 𝐹(𝑤௡)

 𝑤 ~ 𝑽𝑦

𝑦௡ାଵ = 𝑦௡ + ∆𝑡 𝑽்𝐹(𝑽𝑦௡)

Start with a PDE

Discretize

Reduce dimensionality 

  𝑤 ∈ ℝெ,  𝑉 ∈ ℝெ×௡ ,  𝑦 ∈ ℝ௡

ROMs need a basis V

ROMs solve the original governing equations after projecting them into a smaller space, called 
a basis, which is formed using knowledge gained from previous simulations. The smaller basis 
limits the degrees of freedom in order to run faster simulations.
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Given a snapshot matrix A of with full 
order simulations along the columns, 
a basis V can be constructed.

How do you choose a basis? What is V? 

V forms a subspace of dim 𝑛 
where 𝑛 ≤ 𝑁 and 𝑛 ≪ 𝑀

ℝெ

ℛ(V) 𝐴

𝐴 = 𝑈Σ𝑉்

𝑽 = 𝑈௧௥௨௡௖

 𝑤 ~ 𝑽𝑦

Snapshot matrix A ∈ ℝெ×ே 

Perform SVD

Truncate and save first n left  
singular vectors V ∈ ℝெ×௡

𝑋   𝑋   𝑋 𝑋   𝑋   𝑋 𝑋   𝑋   𝑋
⋮     ⋮     ⋮ ⋮     ⋮     ⋮ ⋮     ⋮     ⋮
⋮     ⋮     ⋮ ⋮     ⋮     ⋮ ⋮     ⋮     ⋮
⋮     ⋮     ⋮ ⋮     ⋮     ⋮  ⋮     ⋮     ⋮
⋮     ⋮     ⋮ ⋮     ⋮     ⋮  ⋮     ⋮     ⋮
⋮     ⋮     ⋮ ⋮     ⋮     ⋮  ⋮     ⋮     ⋮
⋮     ⋮     ⋮ ⋮     ⋮     ⋮  ⋮     ⋮     ⋮
⋮     ⋮     ⋮ ⋮     ⋮     ⋮  ⋮     ⋮     ⋮
⋮     ⋮     ⋮ ⋮     ⋮     ⋮  ⋮     ⋮     ⋮
⋮     ⋮     ⋮ ⋮     ⋮     ⋮ ⋮     ⋮     ⋮
⋮     ⋮     ⋮ ⋮     ⋮     ⋮ ⋮     ⋮     ⋮
𝑋   𝑋   𝑋 𝑋   𝑋   𝑋 𝑋   𝑋   𝑋
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Similar snapshots are grouped together using the k-means algorithm. Within each column 
cluster, the ROM ignores other clusters of simulations that are not relevant, and the ROM runs 
faster. Local ROMs are solved in the basis corresponding to the closest cluster center. 

What is a local basis?

 𝑤 ~ 𝑉ଵ𝑦

 𝑤 ~ 𝑉ଶ𝑦 or  𝑤 ~ 𝑉ଷ𝑦 subspace of dimension 𝑛ଵ 𝑖𝑛 ℝெ

𝑛ଵ + 𝑛ଶ + 𝑛ଷ ≤ 𝑁

A ∈ ℝெ×ே

𝑋 𝑋        𝑋 𝑋         𝑋 𝑋
⋮   ⋮        ⋮   ⋮         ⋮   ⋮
𝑋 𝑋        𝑋 𝑋         𝑋 𝑋
𝑋 𝑋        𝑋 𝑋         𝑋 𝑋
⋮   ⋮        ⋮   ⋮         ⋮   ⋮
𝑋 𝑋        𝑋 𝑋         𝑋 𝑋
𝑋 𝑋        𝑋 𝑋         𝑋 𝑋
⋮   ⋮        ⋮   ⋮         ⋮   ⋮
𝑋 𝑋        𝑋 𝑋         𝑋 𝑋 

ℝெ

ℛ(𝑉ଵ) 
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Within a local column cluster, points in space, corresponding to a rows of the matrix, can be 
clustered, giving regions that show similar behavior over time – similar to flow features.

Thus, different models are run for different spatial flow features. The feature-based subspaces 
are not chosen by hand, but by k-means clustering along the rows of the snapshot matrix.

The Idea – Spatially Clustered Local Bases

ℝ௡భ

𝑀ଵ + 𝑀ଶ + 𝑀ଷ = 𝑀

𝐴ଵଵ ∈ ℝெభ×௡భ

subspace of dimension ≤ 𝑛ଵ  𝑖𝑛 ℝெభ

ℝெభ

ℛ(𝑉ଵଵ) 
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More basis vectors can be extracted from the matrix by increasing the number of row clusters, 
giving more accurate results even with very few full order solutions available.

The Idea – Spatially Clustered Local Bases

𝑋 𝑋 𝑋 𝑋 𝑋 𝑋
⋮   ⋮ ⋮   ⋮ ⋮   ⋮
𝑋 𝑋 𝑋 𝑋 𝑋 𝑋
𝑋 𝑋 𝑋 𝑋 𝑋 𝑋
⋮   ⋮ ⋮   ⋮ ⋮   ⋮
𝑋 𝑋 𝑋 𝑋 𝑋 𝑋
𝑋 𝑋 𝑋 𝑋 𝑋 𝑋
⋮   ⋮ ⋮   ⋮ ⋮   ⋮
𝑋 𝑋 𝑋 𝑋 𝑋 𝑋

𝑋 𝑋 𝑋 𝑋 𝑋 𝑋
⋮   ⋮ ⋮   ⋮ ⋮   ⋮
𝑋 𝑋 𝑋 𝑋 𝑋 𝑋
𝑋 𝑋 𝑋 𝑋 𝑋 𝑋
⋮   ⋮ ⋮   ⋮ ⋮   ⋮
𝑋 𝑋 𝑋 𝑋 𝑋 𝑋
𝑋 𝑋 𝑋 𝑋 𝑋 𝑋
⋮   ⋮ ⋮   ⋮ ⋮   ⋮
𝑋 𝑋 𝑋 𝑋 𝑋 𝑋

𝑋 𝑋 0 0 0 0
⋮   ⋮ ⋮   ⋮ ⋮   ⋮
𝑋 𝑋 0 0 0 0
0 0 𝑋 𝑋 0 0
⋮   ⋮ ⋮   ⋮ ⋮   ⋮
0 0 𝑋 𝑋 0 0
0 0 0 0 𝑋 𝑋
⋮   ⋮ ⋮   ⋮ ⋮   ⋮
0 0 0 0 𝑋 𝑋

𝑋 𝑋
⋮   ⋮
𝑋 𝑋
𝑋 𝑋
⋮   ⋮
𝑋 𝑋
𝑋 𝑋
⋮   ⋮
𝑋 𝑋

𝑋 𝑋 𝑋 𝑋 𝑋 𝑋
⋮   ⋮ ⋮   ⋮ ⋮   ⋮
𝑋 𝑋 𝑋 𝑋 𝑋 𝑋

0  0 0  0 0  0
⋮   ⋮ ⋮   ⋮ ⋮   ⋮
0  0 0  0 0  0

0  0 0  0 0  0
⋮   ⋮ ⋮   ⋮ ⋮   ⋮
0  0 0  0 0  0

0  0 0  0 0  0
⋮   ⋮ ⋮   ⋮ ⋮   ⋮
0  0 0  0 0  0

𝑋 𝑋 𝑋 𝑋 𝑋 𝑋
⋮   ⋮ ⋮   ⋮ ⋮   ⋮
𝑋 𝑋 𝑋 𝑋 𝑋 𝑋

0  0 0  0 0  0
⋮   ⋮ ⋮   ⋮ ⋮   ⋮
0  0 0  0 0  0

0  0 0  0 0  0
⋮   ⋮ ⋮   ⋮ ⋮   ⋮
0  0 0  0 0  0

0  0 0  0 0  0
⋮   ⋮ ⋮   ⋮ ⋮   ⋮
0  0 0  0 0  0

𝑋 𝑋 𝑋 𝑋 𝑋 𝑋
⋮   ⋮ ⋮   ⋮ ⋮   ⋮
𝑋 𝑋 𝑋 𝑋 𝑋 𝑋

𝑋 𝑋 𝑋 𝑋 𝑋 𝑋
⋮   ⋮ ⋮   ⋮ ⋮   ⋮
𝑋 𝑋 𝑋 𝑋 𝑋 𝑋
𝑋 𝑋 𝑋 𝑋 𝑋 𝑋
⋮   ⋮ ⋮   ⋮ ⋮   ⋮
𝑋 𝑋 𝑋 𝑋 𝑋 𝑋
𝑋 𝑋 𝑋 𝑋 𝑋 𝑋
⋮   ⋮ ⋮   ⋮ ⋮   ⋮
𝑋 𝑋 𝑋 𝑋 𝑋 𝑋

1 2 3 4 

3 4

Step:

***Option 1***

Capture the same amount of energy 
as a single SVD, with a same-sized 

sparser matrix, 
same accuracy with 

faster computation time.

Option 2

Capture more energy than a single SVD 
with a larger sparser matrix holding same 

number of non-zero values, 
greater accuracy with 

same computation time.

cluster SVD store
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The Burgers’ equation is a good test case for ROMs. Results tend to translate to harder 
problems. It is a one-dimensional application of an initial-boundary-value problem that models 
the movement of a shockwave in a fluid. 

Test Case – Burgers’ Equation

Datasets and .py MOR testbed code from Matt Zahr



Slide 10 of 38

Test Case Results – ROM Solutions
Option 1

Capture the same amount of energy 
as a single SVD, with a same-sized 

sparser matrix, 
same accuracy with 

faster computation time.

𝑋 𝑋 𝑋 𝑋 𝑋 𝑋
⋮   ⋮ ⋮   ⋮ ⋮   ⋮
𝑋 𝑋 𝑋 𝑋 𝑋 𝑋
𝑋 𝑋 𝑋 𝑋 𝑋 𝑋
⋮   ⋮ ⋮   ⋮ ⋮   ⋮
𝑋 𝑋 𝑋 𝑋 𝑋 𝑋
𝑋 𝑋 𝑋 𝑋 𝑋 𝑋
⋮   ⋮ ⋮   ⋮ ⋮   ⋮
𝑋 𝑋 𝑋 𝑋 𝑋 𝑋

𝑋 𝑋 0 0 0 0
⋮   ⋮ ⋮   ⋮ ⋮   ⋮
𝑋 𝑋 0 0 0 0
0 0 𝑋 𝑋 0 0
⋮   ⋮ ⋮   ⋮ ⋮   ⋮
0 0 𝑋 𝑋 0 0
0 0 0 0 𝑋 𝑋
⋮   ⋮ ⋮   ⋮ ⋮   ⋮
0 0 0 0 𝑋 𝑋
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Test Case Results – Projections

RMS error reduction with 
increasing column clusters given 

fixed number of row clusters

RMS error reduction with 
increasing row clusters given 

fixed number of column clusters

Option 2

Capture more energy than a single SVD 
with a larger sparser matrix holding same 

number of non-zero values, 
greater accuracy with 

same computation time.

𝑋 𝑋 𝑋 𝑋 𝑋 𝑋
⋮   ⋮ ⋮   ⋮ ⋮   ⋮
𝑋 𝑋 𝑋 𝑋 𝑋 𝑋

0  0 0  0 0  0
⋮   ⋮ ⋮   ⋮ ⋮   ⋮
0  0 0  0 0  0

0  0 0  0 0  0
⋮   ⋮ ⋮   ⋮ ⋮   ⋮
0  0 0  0 0  0

0  0 0  0 0  0
⋮   ⋮ ⋮   ⋮ ⋮   ⋮
0  0 0  0 0  0

𝑋 𝑋 𝑋 𝑋 𝑋 𝑋
⋮   ⋮ ⋮   ⋮ ⋮   ⋮
𝑋 𝑋 𝑋 𝑋 𝑋 𝑋

0  0 0  0 0  0
⋮   ⋮ ⋮   ⋮ ⋮   ⋮
0  0 0  0 0  0

0  0 0  0 0  0
⋮   ⋮ ⋮   ⋮ ⋮   ⋮
0  0 0  0 0  0

0  0 0  0 0  0
⋮   ⋮ ⋮   ⋮ ⋮   ⋮
0  0 0  0 0  0

𝑋 𝑋 𝑋 𝑋 𝑋 𝑋
⋮   ⋮ ⋮   ⋮ ⋮   ⋮
𝑋 𝑋 𝑋 𝑋 𝑋 𝑋
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Investigation into Projection Error
Option 1 and 2 Projection Error Comparisons

What happens if you project the original snapshot 
matrix into each type of basis?

Option 1 Projection Error Investigation
What happens if you project the original snapshot matrix 
into Option 1 matrices (nonzero basis size held constant) 
with different numbers of row clusters and basis vectors?
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Investigation into Projection Error
Option 2 Projection Error Investigation

What happens if you separate the snapshot matrix into a 
randomly chosen small training set and a validation set, and 
project the validation set on the basis learned from training? 

Option 2 Projection Error Investigation
What happens if your training set only includes two 

hyperparameters, and your validation set only includes a third 
hyperparameter that must now be interpolated (new data).
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Final Results
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A new method for solving these problems faster and more accurately using ROMs:

Spatially Clustered Local Bases

Conclusion

𝑋 𝑋 0 0 0 0
⋮   ⋮ ⋮   ⋮ ⋮   ⋮
𝑋 𝑋 0 0 0 0
0 0 𝑋 𝑋 0 0
⋮   ⋮ ⋮   ⋮ ⋮   ⋮
0 0 𝑋 𝑋 0 0
0 0 0 0 𝑋 𝑋
⋮   ⋮ ⋮   ⋮ ⋮   ⋮
0 0 0 0 𝑋 𝑋
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Option 1 Results for Row-Col Clustering

5 Col Clusters with 5 Row Clusters
--- Avg 8.1426 seconds ---
--- Avg Mean Abs Error is 0.01387---
--- Avg Mean Sqrt Error is 0.08759---

5 Col Clusters with 1 Row Clusters
--- Avg 12.1609 seconds ---
--- Avg Mean Abs Error is 0.02029---
--- Avg Mean Sqrt Error is 0.12083---

5 Col Clusters with 10 Row Clusters
--- Avg 7.9336 seconds ---
--- Avg Mean Abs Error is 0.01891---
--- Avg Mean Sqrt Error is 0.12421---

5 Col Clusters with 2 Row Clusters
--- Avg 9.2743 seconds ---
--- Avg Mean Abs Error is 0.00729---
--- Avg Mean Sqrt Error is 0.05053---
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Option 1 Results for Row-Only Clustering

1 Col Clusters with 1 Row Clusters
--- Avg 7.6635 seconds ---
--- Avg Mean Abs Error is 0.05164---
--- Avg Mean Sqrt Error is 0.09729---

1 Col Clusters with 5 Row Clusters
--- Avg 5.4625 seconds ---
--- Avg Mean Abs Error is 0.06176---
--- Avg Mean Sqrt Error is 0.19966---

1 Col Clusters with 10 Row Clusters
--- Avg 5.5769 seconds ---
--- Avg Mean Abs Error is 0.09045---
--- Avg Mean Sqrt Error is 0.33677---

1 Col Clusters with 2 Row Clusters
--- Avg 6.3926 seconds ---
--- Avg Mean Abs Error is 0.04983---
--- Avg Mean Sqrt Error is 0.1171---


