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NOMENCLATURE 

 

 

Cd = drag coefficient 

Cl = lift coefficient 

Cp = pressure coefficient 

Cµ = momentum coefficient 

D = drag 

L = lift 

α = angle of attack 

C = chord length 

h = slot width 

R = radius of the cylinders 

Re = Reynolds number 

M = Mach number 

St = Strouhal number 

L
~

= characteristic length, meters 

refL = corresponding length in the grid, nondimensional 

refR LLL /
~~

= = reference length used by the code, meters 

a~ = free stream speed of sound, meters/sec 

td~ = time step, sec 

dt = time step, nondimensional 

p  = pressure 

ρ = density 

µ  = molecular viscosity  

λ  = bulk viscosity 

Ω  = vorticity 

Pr = Prandtl number 
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ACRONYMS 

 

 

CFD = Computational Fluid Dynamics 

CFL3D = Computational Fluids Laboratory 3-Dimensional (Flow Solver) 

MPI = Message Passing Interface 

PLOT3D = Plot 3-Dimensional 

TE = Trailing Edge 

LE = Leading Edge 

AOA = Angle of Attack 
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ABSTRACT 

 

 

Research was carried out in order to investigate the aerodynamics of a blunt elliptical 

airfoil with circular leading and trailing edges. A computational fluid dynamics (CFD) code was 

used to apply active flow control in the form of steady blowing and suction so as to enhance 

understanding of the physics of the airfoil. A Navier-Stokes CFD code called CFL3D developed 

at NASA Langley Research Center was used to perform the computations. Results obtained 

through CFD are then validated by comparing them to the group’s internal results obtained 

experimentally at the Aerodynamics Laboratory at the University of Arizona. In order to model 

the turbulent flow field around the ellipse, four turbulence models were tested including the (1) 

Spalart-Allmaras turbulence model (2) Baldwin-Lomax turbulence model (3) Wilcox k-Omega 

turbulence model and (4) Menter’s k-Omega turbulence model. The baseline flow at zero angle 

of attack was studied in depth and solutions were computed through post-stall angles. Physical 

parameters like the slot location, slot width, and momentum coefficient were varied. Also, CFD 

parameters like the time step and the number of subiterations were varied and optimized to 

obtain better solutions. This paper details the work done to validate the code on this model while 

studying a variety of CFD parameters and turbulence models.  
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CHAPTER 1:   INTRODUCTION 

 

 

 This paper attempts to validate CFL3D on the elliptical airfoil case based on the code’s 

ability to predict (1) various methods of flow control (2) time averaged flow characteristics and 

(3) time dependent flow characteristics. Initially, the baseline flow predicted by CFL3D will be 

studied and parameters such as the lift and drag coefficients at varying angles of attack will be 

compared to lab results. The trip strip that is used on the experimental model will be simulated 

by applying a laminar-turbulent transition location with the model. Also, suction and blowing are 

applied at the leading edge and trailing edge near critical flow regions to study the codes ability 

to predict AFC’s capabilities to delay/advance transition or prevent/provoke separation. Overall, 

it becomes clear that the code is well suited for computing the time averaged flow characteristics, 

especially the lift coefficient. It is also able to predict various flow phenomenon associated with 

AFC and yields results that are similar to lab results.  

 

 Lastly, the time dependent behavior of the code is studied and compared to theoretical 

expectations, since experimentally there were no time-dependent results for comparison. It was 

found that the time-dependent behavior is erratic and even the time-averaged values of some 

parameters such as the drag coefficient are heavily dependent on parameters such as time step 

and number of subiterations used within the code. It is also found that the various turbulence 

models yield scattered results. This is altogether not surprising, since it is known that turbulence 

models are often suited for a certain range of cases. So, it is concluded that the oscillatory wake 

behind the ellipse is likely outside the range of the Spallart-Allmaras model. Also, some 

observations are made for other turbulence models, though they are not studied in depth. It is 

found that the Baldwin-Lomax model and Menter’s k-omega model do not exhibit the erratic 

behavior of the Spalart-Allmaras model, with solutions that do not depend so heavily on the time 

step or subiterations.  
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CHAPTER 2:   BACKGROUND 

 

 

2.1 Active Flow Control 

 

 Ludwig Prandtl first used active flow control to influence boundary layers in the early 

1900’s. Through his experiments, he showed how AFC applied to the boundary layer can have a 

great influence on the flow. Experiments in the 60’s and 70’s made use of unsteady flow 

visualizations. In the 80’s and 90’s experiments on turbulent flows like jets, wakes, and mixing 

layers showed the potential of AFC as a major research field. Currently, AFC is used to alter the 

natural flow to a more desirable flow pattern, to reduce drag, increase lift and control separation. 

There are many types of passive and active flow control, including wing flaps, slats, strips, 

suction, and blowing. Currently, there are both computational and experimental efforts to 

determine and optimize the parameters governing active flow control.  

 

2.2 Turbulence Modeling 

 

In 1877, Boussinesq first suggested that turbulent shear stress correlated to eddy viscosity 

and made the first step in determining how turbulence influences flows. Later, Prandtl’s (1925) 

mixing length hypothesis was the first algebraic model of turbulence. From the 1940’s through 

the 1970’s there was a the further development of algebraic, one and two equation turbulence 

models. Currently, for all RANS or URANS computations at high Reynolds numbers, turbulence 

models are required. However, there is much debate about the accuracy of the results for time-

dependent flows. Many of the models are validated (or calibrated) for specific cases of flow 

problems, and turn out to be inadequate when the flow conditions are outside the model’s 

specific range. So, no turbulence model is universally accepted. However, the most successful 

models include the Baldwin-Lomax, Baldwin-Barth, Spalart-Allmaras, and k-Omega models.  
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2.3 Elliptical Airfoils 

 

An elliptical airfoil model has been tested in the subsonic wind tunnel at the 

Aerodynamics Laboratory at the University of Arizona. Blunt bodies such as the elliptical airfoil 

have been tested and found to have large wakes and highly oscillatory behavior. As a 

computational model, the ellipse should be similar to the circular cylinder in subsonic flow. 

(Figure 1) Namely, the trailing edge of the ellipse has the same curve as the trailing edge of the 

circular cylinder. However, while the behavior of the circular cylinder is well predicted by 

CFL3D using the Spalart-Allmaras turbulence model, the behavior of the ellipse not well 

predicted. In fact, the behavior predicted by the Spalart-Allmaras model is found to be heavily 

dependent on parameters within the code such as the time step and number of subiterations. 

 

   

Figure 1: A geometric comparison of the elliptical airfoil to a circular cylinder 
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CHAPTER 3:   THEORY  

 

 

3.1 Solution Method 

 

3.1.1 Governing Equations 

 

The governing equations used in CFL3D are given in the CFL3D Version 5 Manual. 

They are thin-layer approximations to the three dimensional time dependent compressible 

Navier-Stokes equations. They can be written in terms of the generalized coordinates ( )ζηξ ,,  as 

shown in equation 1. 

 

( ) ( ) ( )
0

ˆˆˆˆˆˆˆ
=

∂

−∂
+

∂

−∂
+

∂

−∂
+

∂

∂

ζηξ
vvv

t

HHGGFFQ
   (1) 

 

A transformation between the Cartesian variables ( )zyx ,,  and the generalized 

coordinates ( )ζηξ ,,  of the grid is implied. The variable J represents the Jacobian of the 

transformation from ( )zyx ,,  to ( )ζηξ ,, . 
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,,,
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=
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     (2) 

 

In equation 1, Q̂  is the vector of the variables including density, momentum, and total 

energy per unit volume. 
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The inviscid flux terms are 
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The viscous flux terms are 
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Now, recognize that equation 1 represents the conservation equations. The five equations 

are one equation for the conservation of mass, three equations for the conservation of momentum 

along each coordinate direction, and one equation for the conservation of energy. In these 

equations, the shear stress and heat flux terms are defined in tensor notation. 
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The pressure is obtained by the equation of state for a perfect gas. 

 

( ) ( )
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ρ
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These equations are nondimensionalized in terms of the free-stream density, ∞ρ~ , speed of 
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sound, ∞a~  , and molecular viscosity, ∞µ~ . In order to apply the thin-layer approximation, only 

the derivatives in the direction normal to the wall ( )ζ  are included in the shear stress and heat 

flux terms. Equation 10 is closed by the Stokes hypothesis for bulk viscosity ( )03/2 =+ µλ  and 

Sutherland’s law for molecular viscosity. 

 

3.1.2 Finite Volume Approach 

 

CFL3D uses a finite-volume formulation, resulting in an approximation to the 

conservation laws in integral form 

 

∫∫∫∫∫ =⋅+
∂

∂
SV

dSnfdV
t

0
rr

Q      (14) 

 

f
r

 denotes the net flux through a surface S with unit normal n
r

 containing the volume V. 

Integration of Equation 14 over a control volume bounded by lines of constant ξ , η , and ζ  

along the grid lines gives the following form 
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The values kji ,,Q̂ are regarded as average values taken over a unit grid cell. Also, the 

values of F̂ , Ĝ , and Ĥ  are regarded as face-average values.  
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3.2 Turbulence Model Equations 

 

3.2.1 Equations of Motion 

 

Favre averaging can be used with the Navier-Stokes equations to account for turbulent 

fluctuations. The resulting equations of motion can be written using the summation convention 

as follows. The full Navier-Stokes equations are shown here, but in CFL3D, they are solved as 

the thin-layer approximation in pre-selected coordinate direction(s). The ~ indicates a 

dimensional quantity. 
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Next, define 
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The magnitude of vorticity is 
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The shear stress ijτ~  term is composed of laminar and turbulent components 
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Also, for all eddy-viscosity models in CFL3D the following approximations are made. In 

this paper, all the models tested are all eddy viscosity models. 
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The Navier-Stokes equations are nondimensionalized and written in generalized 

coordinates, as described previously. For eddy-viscosity models, the end result is that the 

turbulent Navier-Stokes equations are identical to the laminar equations with the exception that 
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µ~  is replaced by Tµµ ~~ +  

 

and  

 

  
Pr

~µ
is replaced by 

T

T

Pr

~

Pr

~ µµ
+  

 

Tµ~  is the eddy viscosity value obtained by the turbulence model that is used. Also, it is 

assumed that Pr = 0.72 and TPr  = 0.9. 

 

3.2.2 The Baldwin-Lomax Model 

 

The Baldwin-Lomax model is an algebraic model. Because it is the original model 

employed in CFL3D, its implementation is different from the one and two equation models. For 

the Baldwin-Lomax model, 

 

innerTT ,µµ =   crossoveryy ≤  

outerTT ,µµ =   crossoveryy >  

 

where crossovery  is the location along the constant grid line where innerT ,µ  exceeds outerT ,µ , while 

marching away from the wall. The inner and outer eddy viscosities are given by 
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where, for the inner eddy viscosity, 

 

[ ])26/exp(1 +−−= yyl            (33) 
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and, for the outer eddy viscosity, 

 

[ ]max
2

maxmaxmax /0.1,min FuyFyF difwake =           (35) 

[ ])26/exp(1)( +−−Ω= yyyF      (36) 
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222 wvuwvuudif ++−++=    (38) 

 

The second term in difu  is taken to be zero. In wakes, )26/exp( +−y is set to zero. maxF is 

the maximum value of )(yF  that occurs in a profile and maxy  is the value at which maxF  occurs. 

 

3.2.3 One and Two Equation Models 

 

The one and two equation models can be written in the general form 

 

( ) ( ) DSSX
x

uX
t

DP

i

j ++=
∂

∂
+

∂

∂
       (39) 

 

PS  is a “production” source term, DS is a “destruction” source term, and D  is a diffusion 

term. All of the field equation models are solved uncoupled from the Navier-Stokes equations in 

a similar fashion using this equation. Also, all of the one and two equation models are based on 

incompressible turbulence equations. No compressibility corrections have been added.  

 

3.2.4 The Spalart-Allmaras Model 

 

The Spalart-Allmaras model solves a single field equation for a variable v̂ , which is 
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related to the eddy viscosity Tµ  through 
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For the general form in equation 39 
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In these equations, d  is called the minimum distance function. It is the distance to the 

nearest viscous wall. The variables 1bC , 1wC , 2bC , κ , and σ  are constants, while the 

variables 2tf , 2vf , wf , and 1vf  are all functions of the variable v̂ and other constants.  

 

3.2.5 The Wilcox k-Omega Model 

 

The Wilcox k-Omega Model is a two-equation models which solves for the variables k  

and ω  in order to compute the value of the eddy viscosity Tµ  to use in the governing equations. 

In this model, 

 

ω

ρ
µ

k
T =           (42) 

 

For the general form in equation 39 

 

kX k =          (43) 
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In these equations β , 'β , kσ , ωσ , andγ  are constants. 

 

3.2.6 Menter’s k-Omega SST Model 

 

Menter’s k-Omega Model is a two-equation models which solves for the variables k  and 

ω  in order to compute the value of the eddy viscosity Tµ  and is similar to the Wilcox model. 

However in this model, the eddy viscosity is defined as the minimum of two different functions. 
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For the general form in equation 39, the Menter k-Omega SST model is equivalent to the 
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Wilcox model, except for the term ω,DS , which is given by 
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1F  is similar to equation 45  because it chooses the minimum of several functions of k  

and ω . Also, 2ωσ  is a constant. 

 

3.3 Time Advancement 

 

For a structured grid that cannot be deformed, equation 1 can be written as 
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The time term can be discretized with backward differencing 
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    (49) 

 

The superscripts indicate time level. When φ  = 0 the method is first-order temporally 

accurate; when φ  = ½ the method is second-order accurate. This equation is implicit because the 

right-hand side is a function of the unknown flow variables at time level 1+n . 

 

Because of the method which the left-hand side is treated for computational efficiency in 

steady-state simulations (first-order accuracy), second-order temporal accuracy is forfeited for 
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unsteady computations. One method for recovering the desired accuracy is through the use of 

sub-iterations. The sub-iteration strategy implemented in CFL3D is termed “pseudo time sub-

iteration” (τ -TS).  

 

For the τ -TS method, a pseudo time term is added to the time-accurate Navier-Stokes equations. 
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This equation is then discretized and iterated in m, where m is the subiteration counter. 
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In equation 51, φ  and 'φ  govern the order of accuracy of the physical and pseudo 

time terms, respectively. In practice, the pseudo time term is treated as first order (i.e., 

'φ  = 0), but the general form is shown here for completeness. As ∞→m , the pseudo time 

term vanishes if the sub-iterations converge and 11 ++ → nm QQ . The quantity ∆τ is based on a 

constant CFL number set by the input parameter dt.   

 

The right hand side of the equation ( )mR Q  is output from CFL3D as a measure of the 

residual along with the lift and drag coefficients. This residual can then be used to evaluate the 

convergence of the solution. ( )mR Q  is a vector quantity so only the first term of ( )mR Q   

(density) is output. This is equivalent to the residual of the mass conservation equation and is 

usually around 10-8 for steady solutions and 10-5 for unsteady solutions in CFL3D. Throughout 

this paper, the number that is often reported is the base 10 log of the residual.  
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3.4 Boundary Conditions 

 

3.4.1 Extrapolation Boundary Condition 

 

The extrapolation boundary conditions are cell-center boundary conditions. The ghost 

points are extrapolated from the computational domain. Based on the locations of 1ρ , 1−ρ , 

and 2−ρ depicted in Figure 2, the extrapolated values would be 

 

11 ρρ =−  

12 ρρ =−  

 

 

Figure 2: Extrapolation Boundary Condition Diagram 

 

The same extrapolation is used for the boundary values of the other four flowfield 

variables. 

 

3.4.2 Viscous Surface Boundary Condition 

 

The viscous surface boundary conditions are cell-face boundary conditions. The no-slip 

condition ( )0=V  is applied at the surface. Additional information on the wall temperature 

( )∞TTW

~
/

~
 must also be supplied. The wall for ellipse case was set to be an adiabatic wall. 
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3.4.3 Boundary Condition for Suction and Blowing 

 

The boundary condition for suction and blowing is an extension of the viscous wall 

boundary condition. However, there can now be inflow or outflow through the wall, with the 

coefficient ( ) ( )∞= uuC normalq ρρ / . For suction, qC  is negative. And with this boundary condition 

the direction of the suction and blowing can be specified. The quantities sjetx, sjety, sjetz are the 

direction numbers of the blowing or suction in the x, y, and z directions. In the ellipse case 

several methods of blowing and suction are used. It is assumed that the blowing and suction 

cannot be applied perfectly tangent to the surface of the ellipse, so in CFL3D the blowing/suction 

is applied at a 30 degree angle to the surface. 

 

3.5 Convergence Acceleration 

 

For unsteady cases, second-order temporal accuracy is sacrificed for computational 

efficiency. However, second-order accuracy can be recovered by using sub-iterations. In this 

case, the computation was run second order accurate in time using the pseudo time sub-iteration 

(τ-TS) method. Using this method, the greater the number sub-iterations, the more accurate the 

computation. 

 

As shown in Figure 3, one can increase the accuracy of computations by increasing the 

number of sub-iterations (ncyc), decreasing the time step (dt), or increasing the grid size. So, for 

a given case, if different values of ncyc and dt are tested, the cases with the highest ncyc and 

lowest dt should be the most accurate. Generally, when performing analysis, some compromise 

is usually made between accuracy and efficiency. However, one criterion to limit the time step 

sizing is that the time scale must be small enough to resolve the real flow phenomenon that may 

oscillate at some frequency. So, very large time steps are not expected to be accurate.  
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Figure 3: Dependence of time accuracy on dt, ncyc, and grid size 

 

In the turbulence model study, the models are usually run with dt = 0.1, for consistency. 

However, the two k-omega models were not robust enough to generate solutions at this value of 

dt. So, these models were run at dt = 0.01. Also, dt is varied over two orders of magnitude 

(between 0.01 and 1.00) to study the effect of changing the time step. For these cases, the 

relationship between the nondimensional time step dt utilized in the code and it’s corresponding 

physical time step, td~ is given by equation 52. For these cases cases, L
~

= 0.27127m, refL =1, 

RL
~

= 0.27127m, a~ =341 m/s, and dt is varied. Table 1 gives some values for dt and the 

corresponding values of td~ .  

 

RL

atd
dt ~

~*~
∞=       (52) 

 

 dt 0.01 0.05 0.10 0.50 1.00 

td~
(sec) 8*10-6 4*10-5 8*10-5 4*10-4 8*10-4 

Table 1: Time step dt and corresponding values of td~
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CHAPTER 4   PROCEDURE 

 

 

4.1 Geometry 

 

Although wind tunnel experiments are not performed in this thesis, internal results from 

the Aerodynamics Laboratory are used for comparison with CFD results. A 2D elliptical airfoil 

model with circular leading and trailing edges at zero angle of attack is used in all computations. 

Below is a diagram of the wind tunnel model of this airfoil (Figure 4). At both ends of this 

airfoil, circular cylinders are fitted with slots. The cylinders can be rotated and the slot widths 

can be varied to allow for various locations and methods of flow control. The chord length of the 

airfoil in the lab is approximately 27cm. During wind tunnel tests, a trip strip was set at 3cm 

(11% chord) on the upper and lower surfaces of the airfoil. 

 

 

Figure 4: Diagram of the elliptical airfoil 

 

4.2 Grid Generation 

 

Using the Overgrid graphical user interface, a C-grid was built with dimensions 529 

streamwise x 97 normal x 2 span-wise (Figure 5). There are 91 streamwise points in the wake, 

which extends a distance 20 times the chord length. The grid is split in the streamwise direction 

into 8 grid blocks to allow for computation in parallel mode. The individual grid blocks have 

dimensions 67x97x2. Although the case is 2D, CFL3D is a finite volume code requiring a 3D 

grid, so 2 grid points must be defined in the span-wise direction. Outside the grid in the span-
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wise direction, a boundary condition is set up to extrapolate ghost points outside the flowfield 

domain (Figure 5). 

 

    

Figure 5: Outer boundary conditions for a C-grid 

 

4.3 CFD Software CFL3D 

 

Results are computed using CFL3D Version 6.4, a Reynolds-averaged thin-layer Navier-

Stokes computational fluid dynamics code for structured grids. The spatial discretization uses a 

finite-volume approach. The implicit time advancement can solve steady and unsteady flows. 

Weiss-Smith low Mach number preconditioning is also implemented. The code is parallelized 

with Message Passing Interface (MPI) protocol. Also, the code offers numerous turbulence 

models. Four models have been tested, including Baldwin-Lomax, Spalart-Allmaras, Wilcox k-

omega, and Menter SST k-omega. For all the cases under consideration, the Mach number was 

approximately 0.05 and the Reynolds number was 300,000.  
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CHAPTER 5   RESULTS AND DISCUSSION 

 

 

5.1 Baseline Flow 

 

 Figure 6 shows the pressure coefficient on the surface of the ellipse computed in CFL3D 

at zero angle of attack. It is plotted alongside experimental results obtained from the wind tunnel 

at the Aerodynamics Laboratory. From the figure it is clear that the predicted pressure coefficient 

is similar to the experimentally obtained pressure coefficient. What is most similar is the general 

shape of the curve, especially at the trailing edge where the pressure coefficient reaches a low 

negative constant value. The main differences are that the CFD results slightly underestimate the 

value of the pressure coefficient across much of the surface. Also, CFD results predict a greater 

spike in the pressure coefficient near the leading edge than in the experimental results, which 

predicts smoother values of the pressure coefficient near the leading edge. 

 

 

Figure 6: Cp vs. x/c for the ellipse at zero angle of attack 
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5.1.1 Velocity and Pressure Contours 

 

Figure 7 shows the velocity contours for the ellipse for varying angles of attack ranging 

from 0 to 20 degrees. The contour lines represent lines of constant velocity magnitude. Figure 8 

shows the pressure contours. In the velocity contour plots the red lines represent high velocity, 

while the blue lines indicate a low (near zero) velocity. Low velocities appear at the stagnation 

point at the leading edge, and in the wake close to the body. High velocities are most prevalent 

along the upper surface and near the leading edge of the ellipse.  In the pressure contour plots red 

lines indicate low pressure regions, such as at the stagnation point and in the wake. Blue lines 

represent high pressure at the same location on the upper surface as the low velocity region. 
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(a) α = 0 degrees     (b) α = 4 degrees 

      
(c) α = 8 degrees     (d) α = 12 degrees 

     
(e) α = 16 degrees     (f) α = 20 degrees 

 
Figure 7: Velocity contours for ellipse at 0, 8, 12, 16, and 20 degrees 
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(a) α = 0 degrees     (b) α = 4 degrees 

      
(c) α = 8 degrees     (d) α = 12 degrees 

     
(e) α = 16 degrees     (f) α = 20 degrees 

 

Figure 8: Pressure contours for ellipse at 4, 8, 12, 16, and 20 degrees 
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5.1.2 Comparison of trip locations 

 

Next, a trip is simulated by defining a laminar region at the leading edge of the airfoil. 

The leading edge was forced to maintain a laminar boundary layer up to some percentage of the 

chord on the upper and lower surfaces. So, the grid points near the leading edge of the ellipse are 

run laminar (turbulent terms turned “off”), while the grid points near the trailing edge were run 

turbulent. Using this method, a laminar-turbulent transition location is simulated at varying 

locations, namely at 7%, 11%, 15%, and 19% of the chord length. In the lab, the ellipse had a 

trip strip at 11% chord. Figure 9 shows plots of CL vs. α and CD vs. CL  for varying angles of 

attack for the ellipse with varying trip locations.  

 

 

(a) 
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(b) 

Figure 9: CL vs. α and CD vs CL for the ellipse, Spalart-Allmaras Model 

 

 Figure 9 shows that as the transition location is moved downstream, the angle of attack at 

which stall occurs is decreased. This earlier stall is characteristic of the actual behavior of the 

ellipse in the lab. So, it is concluded that the fully turbulent baseline solution is not necessarily 

the best solution, and that the results are better when a laminar-turbulent transition location is 

applied. From figure 9(a) it is clear that the transition location at 15% chord gives a stall angle 

that is near the stall angle of the experimental results. And, when a trip strip is used, the actual 

transition location is usually downstream of the trip strip. So, the results are consistent because 

the transition location downstream of the trip strip is most similar to lab results. 

 

5.1.3 Trailing Edge Cusp 

 

In order to reduce the size of the wake and study an alternate configuration for the ellipse, 

a cusp was added to the trailing edge of the ellipse. This cusp enforces the Kutta condition and 

drastically changes the behavior of the airfoil. The length of the triangular attachment is 

approximately 3.69” and the two sides of the triangle make a 38 degree angle. A diagram of this 

attachment to the ellipse is shown in Figure 10.  
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Figure 10: Diagram of the Ellipse with the Cusp Attachment 

 

 The pressure coefficient at the surface was plotted and is shown in Figure 11. The shape 

of this curve is very different from Figure 6 for the ellipse without the cusp. So, it is clear that the 

ellipse with the cusp exhibits very different behavior from the ellipse without one. The most 

notable difference is the pressure coefficient near the trailing edge. Without the cusp, the 

pressure coefficient at this location was negative. Now, with the cusp the pressure coefficient has 

considerably increased and is positive. Again, from this figure it is clear that the CFD results are 

very close to the experimental results. However, again, the behavior is slightly different at the 

leading edge of the ellipse near the trip location. 

 

 

Figure 6: Cp vs. x/c for the ellipse with a cusp at zero angle of attack 
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 Next, the ellipse with the cusp was run at varying angles of attack. Figure 12 shows CL 

vs. α for varying angles of attack for the ellipse with the cusp and the basic ellipse. From the plot 

it is clear that at small angles of attack there is a negative lift. This is due to the thickness ratio 

and the trailing edge angle. When the airfoil is rotated, the boundary layer switches from one 

side to the other. The growth at the upper surface and the suction of the attached flow at the 

lower surface are so strong that it produces a negative lift-curve slope. This negative lift is not 

observed with the elliptical section, so it can be concluded that the sharp trailing edge is 

necessary to produce this negative slope.  

 

 

Figure 12: CL vs. α for the Ellipse with a Cusp, no trips 

 

 Figure 13 shows the streamlines at the trailing edge of the ellipse with the cusp at 2 

degrees angles of attack, which reveals that as predicted the lower surface of the airfoil has 

attached flow and there is growth on the upper surface. Figure 14 shows a plot of Cp vs. x/c for 

the ellipse with the cusp. It indicates the negative lift occurs when the area under the curve of 

∆CP near the trailing edge surpasses the area under the curve near the leading edge. Both plots 

illustrate that the CFD results are able to predict this behavior that is expected theoretically.  
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Figure 13: Streamlines at the Trailing Edge of the Ellipse with a Cusp at 2 degrees 

 

 

Figure 14: Cp vs. x/c the Ellipse with a Cusp at 2 degrees 

 

 Figure 15 shows how a trip at the leading edge causes an earlier stall of the airfoil, but 

does little to affect the negative lift-slope curve for small angles of attack. The figure also 

compares the two CFD results to the lab results. Again, it is preferable to prescribe a laminar-

turbulent transition location because it is predicts the stall angle of the airfoil better. In this case 

the ellipse laminar-transition location was prescribed at 11% ellipse chord (3cm), and so the 

predicted stall angle does not coincide with the lab results. Better results would be found with a 
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trip further downstream. However, a 3cm trip is preferable to no trip. Again in Figure 15(b), the 

drag coefficient is well predicted up to stall. However, after stall the lab results are not well 

predicted by the CFD results.  

 

 

(a) 

 

(b) 

Figure 15: CL vs. α and CD vs. CL for the Tripped Ellipse with a Cusp 
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5.2 Active Flow Control 

 

5.2.1 Steady Suction and Blowing at Trailing Edge 

 

 Next, suction and blowing were applied at the trailing edge of the ellipse. Suction and 

blowing were both applied by pointing the slot downstream. Also, suction was applied in two 

different directions by changing the orientation of the ellipse so that the slot was pointed 

upstream. A diagram of blowing and suction for both upstream and downstream configuration of 

the slot is shown in Figure 16. 

 

        

 (a) Suction Upstream and Downstream  (b) Blowing Downstream 

Figure 16: A Diagram of Trailing Edge Suction and Blowing 

 

 The slot width was varied from 15/1000 in. to 90/1000 in. and the value of the 

momentum coefficient was varied between 0% and 8%. All calculations were done at zero angle 

of attack. Plots were made of CL vs. Cµ and CD vs. Cµ to study how suction and blowing can best 

be utilized in active flow control. Figures 17, 18, and 19 show plots of CL vs. Cµ and CD vs. Cµ 

with varying slot widths for both the ellipse and the ellipse with a cusp. Figure 20 compares 

methods suction and blowing for a single value of the slot width.  

 

 Figure 21 compares one of these results to the results obtained experimentally for the 

ellipse with the cusp. From this figure, it is clear that CFD predicts the same negative lift for 

small values of the momentum coefficient. However, the values of the lift coefficient found in 

the lab are considerably lower than those predicted by CFD for high momentum coefficients. 

The lift coefficients predicted for suction are actually closer to the lab results for steady blowing 

for high momentum coefficients.  
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(a) Blowing Downstream CL vs. Cµ 

 

 
(b) Blowing Downstream CD vs. Cµ 

 
Figure 17: CL and CD for blowing downstream for varying slot widths and Cµ 
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(a) Suction Upstream CL vs. Cµ 

 

 
(b) Suction Upstream CD vs. Cµ 

 
Figure 18: CL and CD for suction upstream for varying slot widths and Cµ 
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(a) Suction Downstream CL vs. Cµ 

 

 
 (b) Suction Downstream CD vs. Cµ 

 
 

Figure 19: CL and CD for suction downstream for varying slot widths and Cµ 
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(a) Slot width of 15/1000 inch, CL vs. Cµ 

 

 

(b) Slot width of 15/1000 inch, CD vs. Cµ 

 

Figure 20: CL vs. Cµ and CD vs. Cµ for TE suction and blowing at h = 15/1000 inch 
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(a) 

 
(b)  

 
Figure 21: CL vs. Cµ for the Ellipse with Cusp, CFD and Lab Results, 15/1000 inch slot 

 

 Figure 22 compares the CFD results to some of the experimental results for the ellipse. In 

this case, the CFD results underestimate the lift coefficients that are obtained in the lab both for 

blowing downstream and suction upstream. However, CFD results again are accurately able to 

predict the shape of the curve. Also, they accurately predict the negative lift coefficient for small 
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values of the momentum coefficient for blowing downstream. 

 

 

Figure 22: CL vs. Cµ for the Ellipse, CFD and Lab Results, 15/1000 inch slot 

 

 Figure 23 shows the velocity contours behind the ellipse when steady blowing is applied 

at Cµ = 8%. This figure shows how blowing at high momentum coefficients alters the behavior 

near the trailing edge and results in very high lift coefficients even at zero angle of attack. In 

order to see why there is a negative lift for the ellipse with the cusp for trailing edge blowing, 

Figure 24(a) was made to show the stream function behind the ellipse with the cusp. It is very 

similar to the stream function shown in Figure 13 for the ellipse with a cusp at low angles of 

attack. So, it is concluded that the negative lift slope for low momentum coefficients occurs for a 

similar reason as it did for low angles of attack. It is a result of the high thickness of the airfoil 

coupled with a relatively high trailing edge cusp angle.  
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Figure 23: Velocity contours for the ellipse with steady blowing, Cµ = 8% 

 

 
(a) Ellipse with Cusp 

 
(1)  

 

(b) Ellipse 

Figure 24:  Stream function for Cµ = 0.1% and h = 90/1000 in 
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5.2.2 Steady Suction at Leading Edge 

 

When steady suction is applied to the leading edge of the elliptical airfoil, stall is 

significantly delayed from the baseline case. Also, the lift is significantly increased. It is 

important to study how the airfoil will stall in this case if steady suction is turned off, or 

gradually decreased from some starting value of the momentum coefficient Cµ . This effect, 

similar to the more well known effect of dynamic lift stall and will result in a hysteresis loop and 

is especially important in the designs of helicopters as it may lead to stall flutter. The hysteresis 

was modeled in CFL3D by using the Suction/Blowing boundary condition and applying a 

momentum coefficient of 2% at some angle of attack (varied from 17 to 21 degrees). By 

restarting the solution from the 2% Cµ case at lower values of Cµ , plots of the upper hysteresis 

loop were generated. Also, by restarting the solution from the 0% Cµ case at higher values of Cµ , 

plots of the lower hysteresis loop were generated and are shown in Figure 25. 

 

 

(a) 
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(b) 

Figure 25: Steady Suction Hysteresis Loop at 17, 19, and 21 degrees, h/R = 1.2% 

  

CFD results are compared with results obtained experimentally for this airfoil. They are 

in good agreement as shown in Figure 26. Both hysteresis loops are run at the same angle of 

attack of 19 degrees. Both recover from stall at nearly the same value of Cµ (1.2%). However, 

the value of Cµ that causes the ellipse to stall is slightly different. Also, in the experiments it was 

seen that the lift coefficient remains stable at Cµ is decreased. However, the CFD results did not 

predict this effect. Rather, CFD predicts a gradual decline in CL until stall occurs.  
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(a) 

 

(b) 

Figure 26: Steady Suction Hysteresis Loop at 19 degrees, h/R = 1.2% 

  

Next, velocity contours (Figure 27) were made of the ellipse with leading edge suction to 

show how at a given angle of attack (19 degrees) the tripped ellipse may be stalled. However, 

after applying steady suction at the leading edge the ellipse will recover from the stall and the 
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flow will reattach. As in the earlier velocity contour plots, the red lines represent lines of 

constant high velocity while the blue lines represent low velocity. 

 

 

                (c) α = 19 degrees, Cµ = 0%    (d) α = 19 degrees, Cµ = 2% 

Figure 27: Velocity contours for Cµ = 0% and Cµ = 2% 

 

5.3 Time Dependent Behavior Study 

 

The ellipse was run at zero angle of attack. It was expected that the solution would be 

oscillatory due to the blunt trailing edge, but the time accurate computation converged to a 

steady solution. Particle traces were taken (Figure 28), revealing a flow field characteristic of 

very low Reynolds numbers. This computation employed a time step dt = 0.01 with the number 

of sub-iterations ncyc = 8.  

 

 

Figure 28: Particle traces in the wake behind the ellipse, dt = 0.01 
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It was guessed that the value of the time step was too low. So, dt was increased to 1.00. 

An oscillatory solution was observed, but it was not a good solution. The residuals were high and 

the oscillations in the lift coefficient were too large. Pictures of the flow field were taken 

showing that the solution was not resolved between the boundaries of the grids in the wake 

(Figure 29). Also, plots of CL vs. Number of Iterations were made to observe the difference in 

the solutions for the two values of dt (Figure 30). 

 

 

Figure 29: Velocity magnitude contours for a solution not resolved at grid boundaries, dt = 1.00 

 

 

(a) dt = 0.01      (b) dt = 1.00 

Figure 30: CL vs. Number of iterations, zero AOA, ncyc= 12, for two values of dt 

 

5.3.1 Varying Time Steps 
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The time step was then varied between 1.00 and 0.01 to see if there was a region where 

the solution seemed viable. It was found that the frequency and amplitude of the unsteady 

solution varied widely with the time step (Figure 31a). As the time step was decreased, the 

amplitude of oscillations in CL would decrease, and the value of CD and it’s amplitude of 

oscillations would also decrease (Figure 31b). To see if this occurred at other values for the 

number of sub-iterations, ncyc, solutions for a higher number of ncyc =30 were run.  

     

 

 

(a) ncyc = 12         (b) ncyc = 30 

Figure 31: CL, CD, and Residuals vs. Number of Iterations, varied time steps 



53 

5.3.2 Varying the Number of Subiterations 

 

It was found that the value of ncyc also affected the solution. To analyze these effects, dt 

was held constant while varying the number of cycles from 6 to 42. (Figure 32) It was found that 

increasing number of cycles had nearly the same effect as decreasing the time step. This may be 

because increasing ncyc and decreasing dt both increase the number of computations performed 

per unit time (or pseudo time). Namely, decreasing dt will decrease the time step used in 

computations. And increasing ncyc will decrease the psuedo time step dτ used to compute the 

subiterations.  

 

 

(a) CL         (b) CD 

Figure 32: CL and CD vs. number of iterations, dt = 0.10, varying ncyc 

 

5.3.3 Issues with the Residuals 

 

As ncyc increased (or as dt was decreased) and the solution converged to a steady 

solution, it was observed that the residuals would decrease. (Figure 33a) However, as the 

residuals decreased there were frequent jumps in value of the residuals. (Figure 33b) These 

jumps increase in magnitude as the solution becomes steadier. The heavy dependence of the 

solution on dt and ncyc, along with the jumps in the residuals for converged solutions indicate 

that the numerical model is not converging to a good solution. 
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(a)       (b) 

Figure 33: Residuals vs. number of iterations, dt = 0.10, varying ncyc 

 
5.3.4 Issues for a Wide Variety of Physical Parameters 

 

At this point, the same case was run while some CFD parameters were changed in order 

to determine the cause of the strange solutions.  First, the Mach number was increased and the 

low Mach number preconditioning was turned off. It was thought that perhaps the strange 

solutions could be a result of some issues with low Mach number preconditioning. (Figure 34) 

Next, the code was run with “full” Navier-Stokes. Because CFL3D is a thin-layer solver, the 

viscous derivatives are included in selected coordinate directions, but cross-derivative terms are 

ignored. However, the cross-derivatives are included with “full” Navier-Stokes by setting a 

keyword ifullns=1 and selecting the streamwise (j) and normal (k) directions. (Figure 35) Also, 

the blocks were removed and the code was run in series rather than parallel to test if the solutions 

were poor as a result of an incorrect setup of the parallel code or input files. (Figure 36) 

However, in all cases the strange solutions and oscillations continued. 
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Figure 34: CL and CD vs. number of iterations, ncyc = 12, higher Mach number 

 

 

Figure 35: CL and CD vs. number of iterations, ncyc = 12,  full Navier Stokes 

 

 

Figure 36: CL and CD vs. number of iterations, ncyc = 12, series computation 
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5.3.5 Baldwin-Lomax Solution 

 

It was thought that perhaps the Spalart-Allmaras turbulence model was the source of the 

problem. Another turbulence model known to be robust in CFL3D is Baldwin-Lomax with 

Degani-Schiff modification (ivisc=3). It was employed in the normal (k) direction. The results 

were surprisingly good. As dt and ncyc varied, the frequency and amplitude of oscillations 

remained the same. At high values of dt the value of CD was oscillating too much, but for such a 

high time step there are not enough computations per unit time to generate a good solution. For 

dt < 0.10 the solution looked very good (Figure 37). The residuals were also within a reasonable 

range of values. (Figure 38) The only issue observed was that the Strouhal number for these 

solutions was higher than expected. 

 

 

(a)       (b) 

Figure 37: CL and CD vs. number of iterations, ncyc = 12,  Baldwin-Lomax model 

 

 

Figure 38: Residuals vs. number of iterations, ncyc = 12,  Baldwin-Lomax model 
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Next, in order to see the behavior of the Baldwin-Lomax solution, contour plots of the 

velocity magnitude were made showing the characteristics of the flow directly behind the ellipse 

and in the wake (Figure 39). The solution behaved as expected. Physically, the behavior of the 

flow behind the blunt trailing edge should be similar to the behavior behind a circular cylinder. 

The ellipse, like the cylinder, sheds vortices alternately behind the upper and lower surfaces and 

these vortices propagate into the wake.  

 

 

(a) Solution in the wake    (b) Solution directly behind the ellipse     

Figure 39: Velocity contours at a given time step for the Baldwin-Lomax turbulence model 

 

Next, for the Baldwin-Lomax turbulence model the angle of attack was varied from 0 to 

20 degrees and plots of the velocity and pressure contours were made (Figures 40 and 41). As in 

the earlier plots for the Spalart-Allmaras model, the red lines indicate low velocities while the 

blue lines indicate high velocities. It is clear from these plots that there is a wide unsteady wake 

for all angles attack, whereas in Figures 7 and 8 it was seen that the flow was steady for all these 

cases. So, many of the previous calculations (the trip study and active flow control studies) were 

done using the steady solution computed with the Spalart-Allmaras model.  
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(a) α = 0 degrees     (b) α = 4 degrees 

  
(a) α = 8 degrees     (b) α = 12 degrees 

 

  
(a) α = 16 degrees     (b) α = 20 degrees 

 

Figure 40: Velocity contours for varying angles of attack for the Baldwin-Lomax model 
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(a) α = 0 degrees     (b) α = 4 degrees 

     

(a) α = 8 degrees     (b) α = 12 degrees 

     

(a) α = 16 degrees     (b) α = 20 degrees 

 
Figure 41: Pressure contours for varying angles of attack for the Baldwin-Lomax model 
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It was determined that the Spalart-Allmaras model was causing the strange solutions, and 

that the Baldwin-Lomax turbulence model computed a far more convincing unsteady solution. 

But it was not apparent why this is so, or why the Baldwin-Lomax turbulence model had no 

apparent issues under the same conditions. It is expected that there will be slight differences 

between these two turbulence models. But what is unexpected is the tendency for the Spalart-

Allmaras model to converge to a steady solution, and for its solution to depend so heavily on the 

time step constant and the number of subiterations. 

 

5.4 Turbulence Model Comparison 

 

In order to investigate how much the turbulence models influence the computations for 

the case of the ellipse, a comparison is made between several turbulence models: (1) Baldwin-

Lomax, (2) Spalart-Allmaras, (3) Menter’s k-Omega SST model, and (4) Wilcox k-Omega 

model. In general, the Spalart-Allmaras model is found to perform poorly for this configuration, 

while the Baldwin-Lomax and Menter’s k-Omega SST model perform the best in terms of their 

ability to predict unsteady behavior. 

 

The time-averaged values of CL and CD were then plotted for the various turbulence 

models versus angle of attack (Figure 42). Several observations can be made from the time-

averaged CL and CD plots. First, the values of CL for the k-omega models are too high. It is 

known that the maximum CL of the ellipse in the lab is around 1.2 for the baseline case. Also, 

although the k-omega models have similar values for CL, and similar behavior for both CL and 

CD, the value of CD for Menter’s model is nearly double the value of CD for the Wilcox model. 

Also, the values of CD for nearly all the models are much higher than expected. Stall also does 

not occur for the k-omega models or the Spalart-Allmaras model prior to 22 degrees, while the 

ellipse in the lab stalls somewhere between 16 and 18 degrees for the baseline case. The 

Baldwin-Lomax and tripped Baldwin-Lomax models stall. However, the stall for Baldwin-

Lomax is much more abrupt.  
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(a) 

 

(b) 

Figure 42: Time-averaged CL vs. α and CD vs. CL for various turbulence models 

 

5.4.1 Unsteady Behavior 

 

The time-averaged values of CL and CD, while useful, do not tell how the coefficients 
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vary with time. Each model has very different time-dependent behavior. So, plots were made 

showing the time-dependent oscillations in CL, CD, and the residuals for varying angles of attack 

for both the Baldwin-Lomax and Spalart-Allmaras turbulence models (Figure 43). 

 

The Baldwin-Lomax model showed oscillatory results in CL at all angles of attack, at 

frequencies that gradually decrease with angle of attack. And the Baldwin-Lomax solution at 22 

degrees was highly oscillatory and noisy, because at this point the ellipse is stalled, and with a 

value of dt = 0.10 it is assumed that this solution is not very good. The Spalart-Allmaras model 

was not as consistent, changing from highly oscillatory as zero angle of attack to nearly steady at 

about 16 degrees, to slightly oscillatory again at 22 degrees. So, there are obviously problems 

with the Spalart-Allmaras model at varying angles of attack.  

 

Also, the oscillations in CD for the Baldwin-Lomax model increase gradually until stall. 

Note that the scale for the Baldwin-Lomax plot is much higher than for Spalart-Allmaras. This is 

mostly due to the presence of the stalled solution at 22 degrees. In the Spalart-Allmaras model 

the time-dependent behavior of CD closely mirrors the oscillations in CL.  

 

The residuals for the Baldwin-Lomax model exhibit small oscillations. However, at low 

angles of attack the residuals are nearly steady. This probably occurs because a higher dt is 

needed to resolve the solution at higher angles of attack. Also, the residuals for Spalart-Allmaras 

exhibited the same jumps seen before at about 12 and 16 degrees, where the solution is nearly 

steady. So, the residuals’ jumps are probably a result of the false steady solution computed by the 

Spalart-Allmaras model.  
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(a) Baldwin Lomax     (b) Spalart-Allmaras 

Figure 43: CL, CD, and the Residuals vs. number of iterations for varying AOAs 

 

Plots were then made of the Menter and Wilcox k-omega models. (Figure 44) Although 

the k-omega models appear to oscillate at a lower frequency, this is not the case. The axis does 

not represent time, but the number of iterations. So, the frequency appears 10 times higher 

because these models run at dt = 0.01 instead of dt = 0.10. The models also do not begin from 
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scratch or from a steady run. Because these models are not as robust as others, the previous runs 

of the Baldwin-Lomax model were used as starting points for the k-omega models. Otherwise, 

the solution would not converge.  

 

There are obvious differences between the two models. The first is that Menter’s model 

predicts consistent amplitudes of oscillation at various angles of attack. Also, the frequency of 

oscillations appears to be consistent despite changing the angles of attack. In these respects, its 

behavior is similar to the Baldwin-Lomax model. The Wilcox model on the other hand predicts 

steady behavior at an angle of attack of approximately 8 degrees. Again, this suggests a problem 

in the model. The results should be oscillatory at all angles of attack due to the blunt trailing 

edge. So, this model is comparable to the Spalart-Allmaras model in its failure to predict 

oscillations throughout the full range of angles of attack prior to stall. 

 

  
(a) Menter’s model     (b) Wilcox model 

Figure 44: CL vs. number of iterations for varying AOAs 

 

5.4.2 Power Spectrum Analysis 

 

In order to analyze the time-dependent behavior more effectively, especially the 

frequency of oscillations, power spectrums were created using finite Fourier transforms of the 

time-dependent results. These plots show the dominant frequency of the result, as well as the 

range of frequencies and the amount of noise. (Figures 45-48) The first observation that can be 

made from these plots is that the dominant frequency decreases as the angle of attack increases. 
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This is due to the fact that as the angle of attack increases the characteristic length should be 

redefined, and should increase. For example, at 90 degrees angle of attack the characteristic 

length would be approximately the chord length while at 0 degrees the characteristic length 

would be the thickness of ellipse. In order to maintain the Strouhal number, the frequency must 

decrease as the angle of attack (and hence the characteristic length) increases.  

 

For the Baldwin-Lomax, Menter k-Omega, Wilcox k-Omega and Spalart-Allmaras 

turbulence models, respectively the dominant frequencies have a range of 71Hz – 52Hz, 61Hz – 

51Hz, 56Hz – 38Hz, 25Hz – 7Hz. It is clear once again that the Spalart-Allmaras model is not 

reaching a viable solution, since the range of frequencies is vastly different from the range of all 

other turbulence models tested.  

 

 

(a) 0 deg    (b) 4 deg    (c) 8 deg 

 

(d) 12 deg    (e) 16 deg    (f) 20 deg 

Figure 45: Periodogram for the Baldwin-Lomax Turbulence Model 
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(a) 0 deg    (b) 4 deg    (c) 8 deg 

 

(d) 12 deg    (e) 16 deg    (f) 20 deg 

 

Figure 46: Periodogram for the Spalart-Allmaras Turbulence Model 

 

(a) 0 deg    (b) 4 deg    (c) 8 deg 
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(d) 12 deg    (e) 16 deg    (f) 20 deg 

Figure 47: Periodogram for Menter’s k-Omega Turbulence Model 

 

 

(a) 0 deg    (b) 4 deg    (c) 8 deg 

 

(d) 12 deg    (e) 16 deg    (f) 20 deg 

Figure 48: Periodogram for the Wilcox k-Omega Turbulence Model
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CHAPTER 6   CONCLUSION 

 

Baseline and active flow control cases for the ellipse were investigated using CFD with 

the Spalart-Allmaras turbulence model. Overall, it was found that the time averaged lift 

coefficients predicted by the code were similar to the experimental results. Also, the predicted 

pressure coefficient along the surface of the ellipse was similar to lab results for the ellipse and 

the ellipse with the cusp. The negative lift slope curve for the ellipse with the cusp was also well 

predicted by the code. Also, the results for trailing edge blowing at zero angle of attack were 

similar to lab results. The maximum negative value of CL for blowing downstream was well 

predicted, as well as the shape of the CL vs. Cµ curve. And it was found for trailing edge blowing 

and suction that the value of CL was slightly underestimated by the code for the ellipse, and 

overestimated for the ellipse with the cusp. The hysteresis that occurs when applying leading 

edge suction was also comparable to the hysteresis found experimentally. The ellipse at 19 

degrees would recover from stall at the same value of Cµ as it did in the lab. And, the averaged 

lift and drag coefficients for the stalled and recovered solution were similar to lab results.  

 

Additionally, various turbulence models were tested on the ellipse at angles of attack 

varying from 0 to 22 degrees. Several issues were found with the solutions generated using the 

Spalart-Allmaras turbulence model: (1) The model converged to a steady solution at zero angle 

of attack (2) the solutions were highly dependent on the time step and number of cycles (3) the 

residuals would make sudden jumps that increased as the solution became more steady (4) the 

solution would change from unsteady to steady as the angle of attack increased (5) the frequency 

of oscillations predicted was very poor, whereas all other turbulence models predicted a range of 

frequencies with reasonable Strouhal numbers. Overall, the Spalart-Allmaras model predicted 

various flow phenomenons with reasonable accuracy, but these accurate predictions were limited 

to the time averaged values. Of the other models, the most robust solution was the Baldwin-

Lomax solution. And, between the Menter and Wilcox k-Omega model, Menter’s model was 

most able to predict the time-dependent behavior. Also, the Wilcox k-Omega model displayed 

similar issues with the time dependent behavior as the Spalart-Allmaras model.  
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