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What is the problem?  

 

I demonstrate how a cognitively inspired neural network architecture performs on a given dataset and 

compare its performance to a recently developed baseline. The dataset is a small collection of solutions to 

Burgers’ equation, shown in Figure 1, a one-dimensional application of an initial-boundary-value problem 

that models the movement of a shockwave in a tube.  

 

 
Figure 1: Typical Burgers’ equation solutions for velocity, w or u, as a function of space, x, and time, t 

 

In problems where the time-dependent behavior of a fluids problem is of interest, like Burgers’ equation, 

the inclusion of LSTMs is expected to improve accuracy, reduce computational expense, or both, since in 

the baseline architecture, time step uniformity was not being exploited. The performance of the baseline 

model may be improved using LSTM nodes. The problem is, simply, can the predictions be improved if it 

is known that one of the inputs is time, uniformly spaced? 

 

The baseline model 

 

The baseline architecture is a simple feed-forward network, except with clearly delineated connected 

clusters shown in Figure 2. The network performs a mapping from (x,t,µ) tuples to ( f ) where x represents 

space, t represents time, and y represents the output of the network, which approximates f, the function to 

be learned. In this case, f is the velocity w or u. Also, µ represents a hyperparameter, which could refer to 

any parameter than has been changed from one simulation to the next. A hyperparameter could be, for 

example, a boundary condition, or a constant in the governing equation, like viscosity. 

 

This architecture is unique in that different clusters automatically identify zones in the perceived data that 

behave according to different functions (the function networks). The separation is similar to a mixture of 

experts layer. [3] A separate part of the architecture determines when and by how much to turn the other 

parts on or off (the context networks). Different loss functions are used for each part of the network to 

train them as either function or context networks. The Burgers’ equation test case is well suited to this 

architecture because the problem is more easily solved by breaking it into parts – solutions in front of the 



shockwave and behind it can be thought of as two functions that behave almost independently, with a 

boundary (the shockwave) between them.  

 

 
Figure 2: The clustered network architecture 

 
Step 1: Train function networks    Step 2: Train context network(s) 

 
Figure 3: The clustered network training procedure 

 

The training procedure for this network is also unique in that the function networks are trained separately 

from the context network. The training procedure for the simple 2-cluster network in the diagram is (1) 

Train the network using a loss function defined as the minimum of abs(f-f1) and abs(f-f2) (2) While 

holding the function network weights constant, train the cluster networks using the loss function defined 

as abs(f-y) and (3) Train both networks simultaneously using the loss function from (2).  

 

The limitations of this network are somewhat obvious – scaling up to more complicated PDEs and fluids 

problems becomes a challenge quickly. I don’t expect this overly-simple network to capture the behavior 

of a wake, for example. More insight is needed to build up to that point, if this type of network can be 

used as a building block at all.  

 

The architecture might be overly simple, but it is a good starting point because it is the only architecture 

found that works well for this problem, as shown in Figure 4b, given very examples of Burgers’ 

simulations, in a way that many earlier attempts did not (including variational autoencoders, more 

complex LSTM networks for video sequences, and fully connected layers). Earlier version like Figure 4a 



tended to either over-generalize, smoothing out the shockwave entirely, or overfit, fitting perfectly to 

training data, but giving garbage predictions at nearby hyperparameters not part of the training set. 

 

 
Figure 4: Two different network architectures including a fully connected network and the baseline 

clustered network and their predictions overlaid on actual solutions from either the training or test sets  

 

A paper [1] from an earlier class project for CS221 includes a more details on (1) the reason why the 

Burgers’ dataset was chosen, (2) the types of engineering problems where this type of neural network 

architecture would be useful (3) some related work, and (4) a description of other more standard 

architectures from Fall 2016 that failed to solve the problem. The clustered network that was successful 

on this problem (the baseline) was developed in Winter 2018.  

 

How will the problem be addressed?  

 

I will modify the code that contains the baseline network and determine how to best combine the baseline 

architecture with LSTM nodes. The simplest modification would be to change all the current tanh nodes 

to LSTM nodes, while handling the inputs and outputs appropriately, leaving a network diagram little 

different from Figure 2. I’ll compare the baseline architecture, which performs well, as shown in Figure 3, 

on the dataset, with the LSTM architecture, which I expect will perform better.  

 

How does the project address computational and cognitive issues?  

 

The baseline network architecture was loosely inspired by the shape of pyramidal cells in the neocortex as 

shown in Figure 5. Another inspiration came from the way the interaction between neurons and glial cells 

was presented in [2]. Inspiration for making the LSTM modification for this project came from some 

points made about “learning to learn” recently in CS379C. I had nearly ruled out using LSTMs due to 

poor performance with earlier architectures but appreciated the idea that short timescale 

learning/dynamics can emerge from the behavior of the already-learned weights in a network. Again, 

while the connection is distant, incorporating LSTMs into the network is a step in that direction. 

 



  
Figure 5: Pyramidal cells in the neocortex vs. baseline clustered network architecture  

 

Also, humans solve and simplify problems by breaking them into parts. This network is designed 

explicitly to only do that well. Each training point is assumed to fall into one context or another, or along 

a boundary in between. The function and context networks are thus analogous in some ways to real 

concepts and context.  

 

Finally, for the programmer’s apprentice, there are a great number of technical subproblems. One such 

problem is how networks can learn to represent separate and independent concepts from initially jumbled 

and undifferentiated input data. I assume that trying to fit one curve through the universe is hard, and that 

separating and categorizing things isn’t just something humans do, but something that is necessary for 

making good predictions. Literally separate clusters of networks for separate concepts is one direct 

method for accomplishing this, and the method is at least consistent with observations that different parts 

of the cortex perform unique functions (which, if there is local damage, can be learned and performed 

elsewhere in the cortex). It’s also consistent with observations that intelligence improves with greater 

synaptic pruning.  

 

Metric for success 

 

The benefit of the baseline network architecture is that it generalizes very well. However, the (offline) 

training process is slow compared to the offline costs of other methods that address the same industry 

problems – like reduced order modeling. Therefore, the metric for success would be to see an 

improvement in training time for the time-dependent Burgers’ equation, while not suffering from loss of 

generalization.  

 

Implementation 

 

As shown in Figure 6, there are two important differences between the baseline architecture and the 

modified LSTM architecture (1) the tanh nodes have been replaced with LSTM nodes and (2) the input 

batches are now sequences of (x,µ) tuples instead of (x,t,µ) tuples.   



 
(a) Clustered Network      (b) Clustered LSTM Network 

Figure 6: Diagram of baseline clustered network vs. clustered LSTM network showing architecture 

differences, with arrows representing LSTM nodes 

 

Results 

 

The addition of LSTMs did not lead to any improvement, as shown in Figure 7. Surprisingly, the version 

of the network with LSTMs lost much of what was gained by the original clustered architecture. The 

version with LSTMs (1) trained far more slowly, even with one layer and very few nodes and (2) did not 

generalize as well. While both methods fit the training data, only the baseline clustered network learned to 

accurately extrapolate. Many variations of the clustered LSTM network were explored (changing the 

number of nodes in each layer, the number of layers, etc.) But the issues persisted. It does not appear to be 

a bug, and the problem is likely with the model, as discussed in the following section.  

 

 
Figure 7: Results for the baseline clustered network compared to the clustered LSTM network with 

predictions overlaid on actual solutions from either the training or test sets  

 

 



Discussion 

 

Since the brain receives a steady stream of perceptual data, and since PDE’s are often time dependent, 

with uniformly spaced time steps, the addition of LSTMs to this architecture seemed like a natural 

extension to the baseline architecture for time dependent problems, which also could apply to the way the 

brain processes information. However, because LSTM’s eliminate the gains seen from the clustered 

network, the best option going forward might be to step back and determine whether further 

improvements to the treatment of temporal data in this architecture are necessary, and whether the current 

setup already treats time in a way suited well enough to the problem.  

 

One reason the LSTM network did not improve the results may be that it is unnecessary for the network 

to remember anything more than a step or two back in time. With smooth functions, perhaps only 

memory of one previous time step is necessary. Therefore, an option going forward might be to try a 

convolution over time instead of a complex structure like an LSTM. Also, part of the reason the original 

networks generalizes so well is that it has so few parameters (weights and biases) to learn. The LSTM 

introduces more parameters into the system, which change with time. Part of the benefit of the baseline 

network may have been its simplicity, some of which is lost with an LSTM.   

 

Another reason there was no improvement may be that the current bias of the network already handles 

time appropriately – perhaps there is no need to treat time differently from space, given that the datasets 

are fully solved problems in both time in space. So, there is no need to “step” forward in time. The current 

network fits to the simplest possible function in time, and deviations from this bias may only lead to 

poorer performance.  
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