

1

Abstract

The intention of this project is to investigate the

suitability of a neural network model as an alternative or

extension to methods like reduced order models for the

real-time simulation of full Navier-Stokes solutions. The

neural network model uses RNNs (Recurrent Neural Nets)

made of LSTM (Long Short Term Memory) units to do

unsupervised learning of sequences of Computational

Fluid Dynamics (CFD) simulations. Methods learned for

unsupervised learning of images and videos are applied to

CFD datasets, which conceptually have a lot of overlap

and can be analyzed using similar techniques. Overall, the

RNN models based on LSTMs began to learn

representations of the CFD data, predicting the movement

of shedding vortices for example. With the right tuning

and model setup, the RNN models will likely be able to

learn the features of these datasets far more accurately.

The next step would be to modify the hyper-parameters of

the current model and investigate how the learning can be

improved by changing the construction of the model.

1. Introduction

A commercial jet cruises at about 7/10ths the speed of

sound. Due to the rotation of the gas turbine engine fan

and the increasing velocity of the air over the surface of

the fan blades, a portion of the airflow over the fan

typically experiences supersonic flow conditions and a

weak shock wave. Such a flow field can experience

transonic flutter, which results from the unsteady

interaction of a structure prone to vibration with a

transonic airflow. Phenomena like transonic flutter in

turbomachinery are predicted and mitigated using CFD,

specifically fluid-structure interaction modeling. Flutter is

an aeroelastic issue that can cause near-instantaneous and

catastrophic part failure.

A CFD analysis is spatially local and involves

computing a partial differential equation on a large number

- often millions - of discrete points throughout a

computational domain. Although CFD analyses are a vast

improvement over traditional methods like wind tunnel or

rig testing alone, they are computationally expensive,

which is limiting to the engineer trying to rapidly iterate

and optimize a product. Optimizing a fan design while

mitigating flutter risk can take months because an

aeroelastic analysis of a single design typically takes 3-5

days even with modern computational tools. While

methods exist to increase the speed of a CFD analysis, no

commercially available real-time methods accurately

predict the aeroelastic behavior of turbomachinery in the

region of transonic stall flutter.

Currently, methods like reduced order modeling are

used to compute flow behavior in real-time around a given

design. In reduced order modeling (ROM), a dataset

already exists with pre-computed CFD simulations. From

that dataset, the ROM learns how to make predictions in

the future by creating a simple model based on what is

already known. The goal of reduced order modelling is to

simplify the complex system to run in real time, enabling

significant CPU time reductions. The intention of this

project is to explore the nature of the information a neural

network can learn when given a collection of CFD data.

Long term, this is an investigation of the suitability of

neural networks as an alternative or an extension to

methods like reduced order modeling for the real-time

simulation of flows.

Sequence modeling techniques and RNNs could be used

predict the state of the flow at future time-steps. The intent

of applying an RNN model to CFD data is to identify flow

structures and learn to track these structures: vortices,

boundary layers, turbulent and laminar flow regions, shear

layers, etc. The domain representation using neural

networks can be used to create more optimal local bases

for use in real-time computation of flow simulations or as a

substitute or aid for methods like reduced order modeling.

Overall, Neural networks could potentially have many

applications to fluid dynamics problems. Computational

fluid dynamics datasets conceptually have a lot of overlap

with image datasets and there’s no reason why they cannot

be analyzed with similar techniques.

What can neural networks learn about flow physics?

Tina White

Stanford University
Department of Mechanical Engineering

Stanford, CA 94305
crwhite@stanford.edu

mailto:crwhite@stanford.edu

2

2. Related Work

This project relies greatly on previous work on video

representations by Srivastava et al, 2015 [10] and their

code provided on GitHub. [11] Their work uses multilayer

Long Short Term Memory (LSTM) networks to learn

representations of video sequences. Using the RNN model,

they analyze the outputs to see how well the model can

extrapolate the learned video representation into the future

and into the past.

Applying this method to CFD data may supplement

reduced order modeling techniques, which have been

applied at Stanford by the Farhat Research Group [12] and

applied on a 1D Burger’s Equation and an acceleration

study of a transport aircraft. The effectiveness of reduced

order modeling has already been demonstrated for various

CFD and fluid-structure interaction problems including

aeroelastic problems [3] and problems involving moving

shocks. [8] For domain decomposition, k-means is often

used to cluster subdomains [9] and snapshots [1]. In this

case, the neural network, instead, will make “sense” of the

domain.

One problem encountered consistently in reduced order

modeling for CFD is that shock waves are not well

modeled by ROBs. A shock wave occurs when a wave

moves faster than the local speed of sound. It is

characterized by an abrupt, nearly discontinuous change in

pressure. Therefore, singular value decomposition (SVD)

implementations suffer from unphysical Gibbs’ oscillations

near the shock wave discontinuity. [4] Capturing the

discontinuity and reducing the Gibbs’ oscillations is

difficult without a full order model in the region of the

shock. Some [6] have applied domain decomposition, but

they resort to implementing a full order model in the

region of the shock in order to resolve it. Neural networks

may be less susceptible to this issue.

Also, different forms of domain decomposition are

common in fluid mechanics. The domain is often split

along mesh lines evenly for parallel computing. Typically

the split for a given domain is determined manually by the

engineer considering the particulars of a given design. [5]

In this case, what makes it possible to compute sub-

domains more generally and independent of mesh is that

this procedure is not computing full CFD solutions along

mesh lines. The results of CFD simulations are givens.

ROMs are computed "off the grid." Therefore, there's

more freedom in how to create sub-domains, making the

application of neural networks for domain decomposition

for ROMs full of possibilities.

 Artificial neural networks (ANNs) have been

proposed to train knowledge bots to identify the

idiosyncrasies of CFD simulation software and recognize

patterns that can lead to successful simulations. [2]

Knowledge bots have been used for applications of CFD,

trajectory analysis, and finite-element analysis software. It

has been shows that machine learning algorithms can learn

the idiosyncrasies of computational simulations and

identify regions of instability without giving them

information about mathematical form or discretization

approaches. [2]

ANNs have also been used to apply aerodynamic

pressure loads on unmanned aerial vehicles (UAVs) for the

purpose of carrying out finite element (FE) analysis during

its structural design process. One way fluid–solid

interaction (FSI) for UAV structural design was

completed, in which aerodynamics loads obtained from

CFD were applied on the vehicle structure for steady-state

static FE analysis. Aerodynamic pressure data was sorted

in terms of coordinates for different region, and a feed

forward back propagation neural network model was

trained for each data set to generate approximate pressure

functions in terms of coordinates. [7]

After researching the current applications of

unsupervised learning to flow physics, it was found that

that neural networks have not yet been used to feed-

forward a CFD simulation in time using RNNs or LTSMs,

which is the intent of this project.

3. Methods

The model in this analysis uses RNNs made of LSTM

units to do unsupervised learning according to the

modeling procedure of Srivastava et al, 2015. [10] The

LSTM unit shown in Figure 1 is the basic building block

of the RNN model. Each LSTM unit has a cell which has a

state ct at time t. The cell is like a memory unit. Access to

the memory unit for reading or modifying is controlled

through sigmoidal gates – the input gate it, forget gate ft

and output gate ot.

3

Figure 1: LSTM unit

The model consists of two RNNs – the encoder and the

decoder as shown in Figure 2. The state of the encoder

after the last input has been read is the representation of

the input video. The decoder reconstructs the input

sequence from this representation. The representation

retains information about the appearance of the objects,

the background, and the motion contained in the video.

Figure 2: Composite model

The composite model has two tasks – reconstruct the

input and predict the future. The encoder comes up with a

state from which we can both reconstruct the input and

predict the next few frames. The Autoencoder Model

consists of two RNNs – the encoder and the decoder. The

input to the model is a sequence of image patches. The

encoder reads in this sequence. After the last input has

been read, the decoder outputs a prediction for the target

sequence. The design of the Future Predictor Model is

same as that of the Autoencoder Model, except that the

decoder in this case predicts a frame sequence that comes

after the input sequence. This is the same approach used in

language models for modeling sequences of words.

For each dataset, a single layer Composite Model was

used. Each LSTM had 2048 units, the encoder took 10

frames as input, the decoder reconstructed these 10 frames,

and the future predictor attempted to predict the next 10

frames. Logistic output units were used with a cross

entropy loss function. A code implementing this model

according to Srivastava et al, 2015 [10] was obtained from

GitHub [11].

4. Dataset and Features

4.1 MNIST dataset

The models were first trained on a dataset of moving

MNIST digits in order to compare the results of the code

to the results obtained by Srivastava et al, 2015. [10] In

this dataset, two digits move inside a 64 x 64 patch as

shown in Figure 3. The digits were chosen randomly from

the training set and placed initially at random locations

inside the patch. Each digit was assigned a velocity whose

direction was chosen uniformly randomly on a unit circle

and whose magnitude was also chosen uniformly at

random over a fixed range. The digits bounced-off the

edges of the frame. While 10 frames were used in the

autoencoder and future predictor, 5 frames of each are

plotted in all of the following dataset and results figures.

Figure 3: Bouncing MNIST dataset

4.2 Burger’s equation dataset

A typical three-dimensional CFD mesh for a transonic

stall flutter analysis on a turbomachinery blade contains

about 500,000 points. At each point in the mesh, at least 3-

5 variables are saved, and the full CFD solution of the

fluid motion takes days to complete. Therefore, the first

step is to find a simplified problem that can be used for

testing for the purposes of this project, but implement it in

a way that allows it to be scaled up.

4

Figure 4: Typical Burger’s equation solutions

The solution of a one-dimensional Burgers’ problem is

such a case. Figure 4 shows simple 1D Burger’s equation

solutions. It is a one-dimensional fluids application of an

initial-boundary-value problem (IBVP) that models the

movement of a shockwave. The figure shows the velocity

w vs. location x as a shockwave moves from left to right in

time across the domain. A small python code can run the

one-dimension Burger’s problem. An analysis was run

with 1000 points in the mesh. One variable, velocity, is

saved per coordinate, x. A set of 1000 snapshots was

generated. Because the problem is much simpler than a full

Navier-Stokes simulation, all of the snapshots were

generated in a few minutes. Figure 5 shows a set of

snapshots generated for the Burger’s equation in time.

Figure 5: Burger’s equation dataset

4.3 CFD dataset

The third dataset was generated using a 2D unsteady

computational fluid dynamics solver, which solves the full

Navier-Stokes equations. A 2D analysis emulates a slice of

a 3D CFD simulation. While the code was developed for

airfoils, the physics of a turbomachinery blade is the same.

The twisting and flexing of the airfoil emulates the twisting

and flexing of a turbomachinery blade undergoing a

phenomenon like flutter. Figure 6 shows the response of a

fluid to the unsteady motion of a blade at three instances in

time.

Figure 6: Flow evolution over time as airfoil blade section twists

and flexes

This type of simulation is ultimately what the neural

network must learn. However, the data vectors are much

larger than the Burger's equation vectors. The Burger’s

dataset was used for debugging, and then the code was

trained later on the oscillating airfoil dataset. Figure 7

shows snapshots from a few 2D CFD simulations of an

oscillating airfoil.

Figure 7: CFD dataset

There were two approaches that could be used to

analyze the CFD datasets. In the first approach, the

conservation variables computed at each point in the

analysis, such as density, momentum, and/or energy, are

used in place of RGB channels for image recognition. The

data is analyzed directly at mesh points on the CFD mesh.

One potential issue with this representation is the warped

structure of CFD meshes, see Figure 8, as opposed to the

simpler grid structure of images. In the second approach,

contours of a computed variable can be plotted to generate

images, which are then treated like pixels of visual data for

constructing videos. The second approach is used in this

study in order to meet the requirement that visual

recognition be used for the project, and because it is

simpler to implement with current visual recognition

methods. However, the second approach is better suited

for engineering applications and would produce more

meaningful evaluation metrics that can be directly

compared to current methods like reduced order modeling.

In the second method, the RNN is directly perceiving

conservation variables on grid points instead of the more

familiar RGB visual images.

5

Figure 8: Example of the spatial variation of the grid structure of

a C-mesh for a CFD analysis

5. Results

5.1 MNIST results

The MNIST dataset was run to check whether the model

was working as intended prior to testing its suitability on

the Burger’s equation and CFD datasets. Training was run

for 1000 iterations before viewing the results. While the

results, shown in Figure 9 are not yet sharp predictions, the

model is clearly beginning to learn the features of the

digits and their motion. This was considered sufficient to

move on and begin running the model on the planned

datasets.

Figure 9: Bouncing MNIST preliminary results

5.2 Burger’s equation results

The Burger’s equation results are in Figure 10. The

model was run for 5000 iterations and, as seen in the

MNIST dataset, it is beginning to learn the shockwave

features. The issue encountered with the dataset used for

training was that the validation set was poorly defined by

the training set, and therefore the shockwave dynamics

were not well captured. Most of the training set did not

include solutions with clear shocks, but simply supersonic

solutions that did not exhibit the discontinuity

characteristic of shocks. This is why the future predictor

predicts future time steps with relatively smooth, flat lines.

This is a simple fix, and although there was not enough

time to create new training and validation sets for this

project, an improved dataset will be generated using the

Burger’s equation solver.

Figure 10: Burger’s equation preliminary results

5.3. CFD results

 The CFD results are shown in Figures 11 and 12. This

model was also run for 5000 iterations. The CFD

validation set generated was well represented by the

training set, and so even though the dynamics of a full

Navier Stokes simulation in 2D are far more complex than

the Burger’s equation simulations, it is clear that the model

was beginning to capture them better. The moving of the

shedding vortices, and the pressure changes at the

stagnation point at the front of the airfoil are clearly

visible. One issue is the apparent noise of the solution –

the black specs that dot the images.

Figure 11: CFD preliminary results

Figure 12: CFD preliminary results full size

Due to project time constraints, only these first

preliminary models of neural network solutions to CFD

datasets were run. While not highly accurate, the method is

clearly able to capture the complexities of some flow

phenomenon. At this point, the model will be modified to

use the first approach to modeling CFD data, where the

conservation variables computed at each point in the

6

analysis, such as density, momentum, and/or energy, are

used in place of RGB channels for image recognition. This

will take considerable reorganization of the original code,

but will generate results that are more easily comparable to

traditional CFD solution methods. They will therefore

have more meaningful evaluation metrics than visual

inspection.

6. Conclusions / Future Work

The next steps would be to modify the hyper-parameters

of the model and investigate the effects of changing the

construction of the model. Due to the results of Srivastava

et al 2015, [10] it is expected that adding depth to the

model will make considerably better predictions, and so

the next step is to train a two layer Composite Model, with

each layer having 2048 units. Another plan is to change

the future predictor by making it conditional in order to

make sharper predictions. Another option for improving

the model is to apply convolutions across patches of the

CFD videos and stack multiple layers of these models.

Another investigation would be to check if the model can

be tested at time scales that are different from the training

time scale.

Visualizing the features learned by this model by

looking at the weights that connect each input frame to the

encoder will reveal information about what the model is

learning about the simulation. Also, the models can be

evaluated by looking at the cross entropy of the predictions

with respect to the ground truth. As further investigations

are completed, these methods can be used to determine

their applicability.

Overall, the RNN models based on LSTMs began to

learn visually compelling representations of both the

shockwave and CFD data. However, at this point the

preliminary models are not comparable to alternatives like

state-of-the-art reduced order modeling. Currently, the

results have been compared and analyzed only through

visualization, but the model predictions will be analyzed

quantitatively once better models are constructed and

trained. Overall, for simplifying and running real-time

CFD simulations, neural networks show promise. With the

right tuning and model setup, the RNN models will likely

be able to learn the representative features of flow physics.

References

[1] Amsallem, David, Matthew J. Zahr, and Charbel Farhat.

"Nonlinear model order reduction based on local

reduced‐order bases." International Journal for Numerical

Methods in Engineering 92.10 (2012): 891-916.

[2] Farhat, Charbel, Michael Lesoinne, and P. Le Tallec. "Load

and motion transfer algorithms for fluid/structure

interaction problems with non-matching discrete

interfaces: Momentum and energy conservation, optimal

discretization and application to aeroelasticity." Computer

methods in applied mechanics and engineering 157.1

(1998): 95-114.

[3] Geuzaine, Philippe, et al. "Aeroelastic dynamic analysis of

a full F-16 configuration for various flight conditions."

AIAA journal 41.3 (2003): 363-371.

[4] Gottlieb, David, and Chi-Wang Shu. "On the Gibbs

phenomenon and its resolution." SIAM review 39.4

(1997): 644-668.

[5] Gropp, William D., and David E. Keyes. "Domain

decomposition methods in computational fluid dynamics."

International journal for numerical methods in fluids 14.2

(1992): 147-165.

[6] Lucia, David J., Paul I. King, and Philip S. Beran. "Domain

decomposition for reduced-order modeling of a flow with

moving shocks." AIAA journal 40.11 (2002): 2360-2362.

[7] Mazhar, Farrukh, et al. "On using neural networks in UAV

structural design for CFD data fitting and classification."

Aerospace Science and Technology 30.1 (2013): 210-225.

[8] Samareh, Jamshid A., and Jay Ming Wong. "Training

Knowledge Bots for Physics-Based Simulations Using

Artificial Neural Networks." (2014).

[9] Smith, Robert E. Computational fluids domain reduction to

a simplified fluid network. No. TARDEC-22878. ARMY

TANK AUTOMOTIVE RESEARCH DEVELOPMENT

AND ENGINEERING CENTER WARREN MI, 2012.

[10] Srivastava, Nitish, Elman Mansimov, and Ruslan

Salakhutdinov. "Unsupervised learning of video

representations using LSTMs." arXiv preprint

arXiv:1502.04681 (2015).

[11] Srivastava, Nitish, P 2015. Unsupervised Learning of

Video Representations using LSTMs 1(1):e4, DOI:

https://github.com/emansim/unsupervised-videos

[12] Washabaugh, Kyle, et al. "Nonlinear model reduction for

CFD problems using local reduced-order bases." 42nd

AIAA Fluid Dynamics Conference and Exhibit, Fluid

Dynamics and Co-located Conferences, AIAA Paper. Vol.

2686. 2012.

