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Abstract 

 

The intention of this project is to investigate the 

suitability of a neural network model as an alternative or 

extension to methods like reduced order models for the 

real-time simulation of full Navier-Stokes solutions. The 

neural network model uses RNNs (Recurrent Neural Nets) 

made of LSTM (Long Short Term Memory) units to do 

unsupervised learning of sequences of Computational 

Fluid Dynamics (CFD) simulations. Methods learned for 

unsupervised learning of images and videos are applied to 

CFD datasets, which conceptually have a lot of overlap 

and can be analyzed using similar techniques. Overall, the 

RNN models based on LSTMs began to learn 

representations of the CFD data, predicting the movement 

of shedding vortices for example. With the right tuning 

and model setup, the RNN models will likely be able to 

learn the features of these datasets far more accurately. 

The next step would be to modify the hyper-parameters of 

the current model and investigate how the learning can be 

improved by changing the construction of the model.  

1. Introduction 

A commercial jet cruises at about 7/10ths the speed of 

sound. Due to the rotation of the gas turbine engine fan 

and the increasing velocity of the air over the surface of 

the fan blades, a portion of the airflow over the fan 

typically experiences supersonic flow conditions and a 

weak shock wave. Such a flow field can experience 

transonic flutter, which results from the unsteady 

interaction of a structure prone to vibration with a 

transonic airflow. Phenomena like transonic flutter in 

turbomachinery are predicted and mitigated using CFD, 

specifically fluid-structure interaction modeling. Flutter is 

an aeroelastic issue that can cause near-instantaneous and 

catastrophic part failure.  

 

A CFD analysis is spatially local and involves 

computing a partial differential equation on a large number 

- often millions - of discrete points throughout a 

computational domain. Although CFD analyses are a vast 

improvement over traditional methods like wind tunnel or 

rig testing alone, they are computationally expensive, 

which is limiting to the engineer trying to rapidly iterate 

and optimize a product. Optimizing a fan design while 

mitigating flutter risk can take months because an 

aeroelastic analysis of a single design typically takes 3-5 

days even with modern computational tools. While 

methods exist to increase the speed of a CFD analysis, no 

commercially available real-time methods accurately 

predict the aeroelastic behavior of turbomachinery in the 

region of transonic stall flutter. 

 

Currently, methods like reduced order modeling are 

used to compute flow behavior in real-time around a given 

design. In reduced order modeling (ROM), a dataset 

already exists with pre-computed CFD simulations. From 

that dataset, the ROM learns how to make predictions in 

the future by creating a simple model based on what is 

already known. The goal of reduced order modelling is to 

simplify the complex system to run in real time, enabling 

significant CPU time reductions. The intention of this 

project is to explore the nature of the information a neural 

network can learn when given a collection of CFD data. 

Long term, this is an investigation of the suitability of 

neural networks as an alternative or an extension to 

methods like reduced order modeling for the real-time 

simulation of flows.  

 

Sequence modeling techniques and RNNs could be used 

predict the state of the flow at future time-steps. The intent 

of applying an RNN model to CFD data is to identify flow 

structures and learn to track these structures: vortices, 

boundary layers, turbulent and laminar flow regions, shear 

layers, etc. The domain representation using neural 

networks can be used to create more optimal local bases 

for use in real-time computation of flow simulations or as a 

substitute or aid for methods like reduced order modeling. 

Overall, Neural networks could potentially have many 

applications to fluid dynamics problems. Computational 

fluid dynamics datasets conceptually have a lot of overlap 

with image datasets and there’s no reason why they cannot 

be analyzed with similar techniques.   

 

What can neural networks learn about flow physics?  
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2. Related Work 

 

This project relies greatly on previous work on video 

representations by Srivastava et al, 2015 [10] and their 

code provided on GitHub. [11] Their work uses multilayer 

Long Short Term Memory (LSTM) networks to learn 

representations of video sequences. Using the RNN model, 

they analyze the outputs to see how well the model can 

extrapolate the learned video representation into the future 

and into the past. 

 

Applying this method to CFD data may supplement 

reduced order modeling techniques, which have been 

applied at Stanford by the Farhat Research Group [12] and 

applied on a 1D Burger’s Equation and an acceleration 

study of a transport aircraft. The effectiveness of reduced 

order modeling has already been demonstrated for various 

CFD and fluid-structure interaction problems including 

aeroelastic problems [3] and problems involving moving 

shocks. [8] For domain decomposition, k-means is often 

used to cluster subdomains [9] and snapshots [1]. In this 

case, the neural network, instead, will make “sense” of the 

domain.  

 

One problem encountered consistently in reduced order 

modeling for CFD is that shock waves are not well 

modeled by ROBs. A shock wave occurs when a wave 

moves faster than the local speed of sound. It is 

characterized by an abrupt, nearly discontinuous change in 

pressure. Therefore, singular value decomposition (SVD) 

implementations suffer from unphysical Gibbs’ oscillations 

near the shock wave discontinuity. [4] Capturing the 

discontinuity and reducing the Gibbs’ oscillations is 

difficult without a full order model in the region of the 

shock. Some [6] have applied domain decomposition, but 

they resort to implementing a full order model in the 

region of the shock in order to resolve it. Neural networks 

may be less susceptible to this issue.  

 

Also, different forms of domain decomposition are 

common in fluid mechanics. The domain is often split 

along mesh lines evenly for parallel computing. Typically 

the split for a given domain is determined manually by the 

engineer considering the particulars of a given design. [5] 

In this case, what makes it possible to compute sub-

domains more generally and independent of mesh is that 

this procedure is not computing full CFD solutions along 

mesh lines. The results of CFD simulations are givens. 

ROMs are computed "off the grid." Therefore, there's 

more freedom in how to create sub-domains, making the 

application of neural networks for domain decomposition 

for ROMs full of possibilities.   

 

 Artificial neural networks (ANNs) have been 

proposed to train knowledge bots to identify the 

idiosyncrasies of CFD simulation software and recognize 

patterns that can lead to successful simulations. [2] 

Knowledge bots have been used for applications of CFD, 

trajectory analysis, and finite-element analysis software. It 

has been shows that machine learning algorithms can learn 

the idiosyncrasies of computational simulations and 

identify regions of instability without giving them 

information about mathematical form or discretization 

approaches. [2] 

 

ANNs have also been used to apply aerodynamic 

pressure loads on unmanned aerial vehicles (UAVs) for the 

purpose of carrying out finite element (FE) analysis during 

its structural design process. One way fluid–solid 

interaction (FSI) for UAV structural design was 

completed, in which aerodynamics loads obtained from 

CFD were applied on the vehicle structure for steady-state 

static FE analysis. Aerodynamic pressure data was sorted 

in terms of coordinates for different region, and a feed 

forward back propagation neural network model was 

trained for each data set to generate approximate pressure 

functions in terms of coordinates. [7] 

 

After researching the current applications of 

unsupervised learning to flow physics, it was found that 

that neural networks have not yet been used to feed-

forward a CFD simulation in time using RNNs or LTSMs, 

which is the intent of this project.  

3. Methods 

 

The model in this analysis uses RNNs made of LSTM 

units to do unsupervised learning according to the 

modeling procedure of Srivastava et al, 2015. [10] The 

LSTM unit shown in Figure 1 is the basic building block 

of the RNN model. Each LSTM unit has a cell which has a 

state ct at time t. The cell is like a memory unit. Access to 

the memory unit for reading or modifying is controlled 

through sigmoidal gates – the input gate it, forget gate ft 

and output gate ot. 
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Figure 1: LSTM unit 

 

The model consists of two RNNs – the encoder and the 

decoder as shown in Figure 2. The state of the encoder 

after the last input has been read is the representation of 

the input video. The decoder reconstructs the input 

sequence from this representation. The representation 

retains information about the appearance of the objects, 

the background, and the motion contained in the video. 

 

 
Figure 2: Composite model 

 

The composite model has two tasks – reconstruct the 

input and predict the future. The encoder comes up with a 

state from which we can both reconstruct the input and 

predict the next few frames. The Autoencoder Model 

consists of two RNNs – the encoder and the decoder. The 

input to the model is a sequence of image patches. The 

encoder reads in this sequence. After the last input has 

been read, the decoder outputs a prediction for the target 

sequence. The design of the Future Predictor Model is 

same as that of the Autoencoder Model, except that the 

decoder in this case predicts a frame sequence that comes 

after the input sequence. This is the same approach used in 

language models for modeling sequences of words.  

 

For each dataset, a single layer Composite Model was 

used. Each LSTM had 2048 units, the encoder took 10 

frames as input, the decoder reconstructed these 10 frames, 

and the future predictor attempted to predict the next 10 

frames. Logistic output units were used with a cross 

entropy loss function. A code implementing this model 

according to Srivastava et al, 2015 [10] was obtained from 

GitHub [11].  

 

4. Dataset and Features 

 

4.1 MNIST dataset 

 

The models were first trained on a dataset of moving 

MNIST digits in order to compare the results of the code 

to the results obtained by Srivastava et al, 2015. [10] In 

this dataset, two digits move inside a 64 x 64 patch as 

shown in Figure 3. The digits were chosen randomly from 

the training set and placed initially at random locations 

inside the patch. Each digit was assigned a velocity whose 

direction was chosen uniformly randomly on a unit circle 

and whose magnitude was also chosen uniformly at 

random over a fixed range. The digits bounced-off the 

edges of the frame. While 10 frames were used in the 

autoencoder and future predictor, 5 frames of each are 

plotted in all of the following dataset and results figures. 

 

 

 
Figure 3: Bouncing MNIST dataset 

 

4.2 Burger’s equation dataset 

 

A typical three-dimensional CFD mesh for a transonic 

stall flutter analysis on a turbomachinery blade contains 

about 500,000 points. At each point in the mesh, at least 3-

5 variables are saved, and the full CFD solution of the 

fluid motion takes days to complete. Therefore, the first 

step is to find a simplified problem that can be used for 

testing for the purposes of this project, but implement it in 

a way that allows it to be scaled up.  
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Figure 4: Typical Burger’s equation solutions 

 

 

The solution of a one-dimensional Burgers’ problem is 

such a case. Figure 4 shows simple 1D Burger’s equation 

solutions. It is a one-dimensional fluids application of an 

initial-boundary-value problem (IBVP) that models the 

movement of a shockwave. The figure shows the velocity 

w vs. location x as a shockwave moves from left to right in 

time across the domain. A small python code can run the 

one-dimension Burger’s problem. An analysis was run 

with 1000 points in the mesh. One variable, velocity, is 

saved per coordinate, x. A set of 1000 snapshots was 

generated. Because the problem is much simpler than a full 

Navier-Stokes simulation, all of the snapshots were 

generated in a few minutes. Figure 5 shows a set of 

snapshots generated for the Burger’s equation in time.  

 

 
Figure 5: Burger’s equation dataset 

 

4.3 CFD dataset 

 

The third dataset was generated using a 2D unsteady 

computational fluid dynamics solver, which solves the full 

Navier-Stokes equations. A 2D analysis emulates a slice of 

a 3D CFD simulation. While the code was developed for 

airfoils, the physics of a turbomachinery blade is the same. 

The twisting and flexing of the airfoil emulates the twisting 

and flexing of a turbomachinery blade undergoing a 

phenomenon like flutter. Figure 6 shows the response of a 

fluid to the unsteady motion of a blade at three instances in 

time.  

 

 
Figure 6: Flow evolution over time as airfoil blade section twists 

and flexes 

 
This type of simulation is ultimately what the neural 

network must learn. However, the data vectors are much 

larger than the Burger's equation vectors. The Burger’s 

dataset was used for debugging, and then the code was 

trained later on the oscillating airfoil dataset. Figure 7 

shows snapshots from a few 2D CFD simulations of an 

oscillating airfoil. 

 

 

 
Figure 7: CFD dataset 

 
There were two approaches that could be used to 

analyze the CFD datasets. In the first approach, the 

conservation variables computed at each point in the 

analysis, such as density, momentum, and/or energy, are 

used in place of RGB channels for image recognition. The 

data is analyzed directly at mesh points on the CFD mesh. 

One potential issue with this representation is the warped 

structure of CFD meshes, see Figure 8, as opposed to the 

simpler grid structure of images. In the second approach, 

contours of a computed variable can be plotted to generate 

images, which are then treated like pixels of visual data for 

constructing videos. The second approach is used in this 

study in order to meet the requirement that visual 

recognition be used for the project, and because it is 

simpler to implement with current visual recognition 

methods. However, the second approach is better suited 

for engineering applications and would produce more 

meaningful evaluation metrics that can be directly 

compared to current methods like reduced order modeling. 

In the second method, the RNN is directly perceiving 

conservation variables on grid points instead of the more 

familiar RGB visual images.  
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Figure 8: Example of the spatial variation of the grid structure of 

a C-mesh for a CFD analysis 

 

5. Results 

 

5.1 MNIST results 

 

The MNIST dataset was run to check whether the model 

was working as intended prior to testing its suitability on 

the Burger’s equation and CFD datasets. Training was run 

for 1000 iterations before viewing the results. While the 

results, shown in Figure 9 are not yet sharp predictions, the 

model is clearly beginning to learn the features of the 

digits and their motion. This was considered sufficient to 

move on and begin running the model on the planned 

datasets. 

 

 

 

 
 
Figure 9: Bouncing MNIST preliminary results 

 

5.2 Burger’s equation results 

 

The Burger’s equation results are in Figure 10. The 

model was run for 5000 iterations and, as seen in the 

MNIST dataset, it is beginning to learn the shockwave 

features. The issue encountered with the dataset used for 

training was that the validation set was poorly defined by 

the training set, and therefore the shockwave dynamics 

were not well captured. Most of the training set did not 

include solutions with clear shocks, but simply supersonic 

solutions that did not exhibit the discontinuity 

characteristic of shocks. This is why the future predictor 

predicts future time steps with relatively smooth, flat lines. 

This is a simple fix, and although there was not enough 

time to create new training and validation sets for this 

project, an improved dataset will be generated using the 

Burger’s equation solver.  

 

 
 
Figure 10: Burger’s equation preliminary results 

 

5.3. CFD results 

 

 The CFD results are shown in Figures 11 and 12. This 

model was also run for 5000 iterations. The CFD 

validation set generated was well represented by the 

training set, and so even though the dynamics of a full 

Navier Stokes simulation in 2D are far more complex than 

the Burger’s equation simulations, it is clear that the model 

was beginning to capture them better. The moving of the 

shedding vortices, and the pressure changes at the 

stagnation point at the front of the airfoil are clearly 

visible. One issue is the apparent noise of the solution – 

the black specs that dot the images.  

 

 

 

 
 
Figure 11: CFD preliminary results 

 

 

 

 
Figure 12: CFD preliminary results full size 

  

Due to project time constraints, only these first 

preliminary models of neural network solutions to CFD 

datasets were run. While not highly accurate, the method is 

clearly able to capture the complexities of some flow 

phenomenon. At this point, the model will be modified to 

use the first approach to modeling CFD data, where the 

conservation variables computed at each point in the 



 

6 

analysis, such as density, momentum, and/or energy, are 

used in place of RGB channels for image recognition. This 

will take considerable reorganization of the original code, 

but will generate results that are more easily comparable to 

traditional CFD solution methods. They will therefore 

have more meaningful evaluation metrics than visual 

inspection. 

6. Conclusions / Future Work 

The next steps would be to modify the hyper-parameters 

of the model and investigate the effects of changing the 

construction of the model. Due to the results of Srivastava 

et al 2015, [10] it is expected that adding depth to the 

model will make considerably better predictions, and so 

the next step is to train a two layer Composite Model, with 

each layer having 2048 units. Another plan is to change 

the future predictor by making it conditional in order to 

make sharper predictions. Another option for improving 

the model is to apply convolutions across patches of the 

CFD videos and stack multiple layers of these models. 

Another investigation would be to check if the model can 

be tested at time scales that are different from the training 

time scale. 

 

Visualizing the features learned by this model by 

looking at the weights that connect each input frame to the 

encoder will reveal information about what the model is 

learning about the simulation. Also, the models can be 

evaluated by looking at the cross entropy of the predictions 

with respect to the ground truth. As further investigations 

are completed, these methods can be used to determine 

their applicability.  

 

Overall, the RNN models based on LSTMs began to 

learn visually compelling representations of both the 

shockwave and CFD data. However, at this point the 

preliminary models are not comparable to alternatives like 

state-of-the-art reduced order modeling. Currently, the 

results have been compared and analyzed only through 

visualization, but the model predictions will be analyzed 

quantitatively once better models are constructed and 

trained. Overall, for simplifying and running real-time 

CFD simulations, neural networks show promise. With the 

right tuning and model setup, the RNN models will likely 

be able to learn the representative features of flow physics.  
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