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Abstract 

Neural networks are powerful tools for solving problems for which the 
governing equations are unknown. This project will assess the suitability of 
neural networks for solving problems for which the governing equations are 
known, but time intensive to compute. It will attempt to compress training 
data from previous engineering simulations to find a simpler representation 
of a given problem. The training data will come from a finite element 
analysis, which is a numerical simulation technique using a large system of 
equations to find approximate solutions to boundary value problems for 
partial differential equations. A computational fluid dynamics (CFD) 
problem would be a prime example of a finite element-like problem that 
computes accurate results, but in engineering problems that are of interest to 
industry, the results often require extensive computational power to achieve.   

 

1  Background  

 
1 .1  B a se l ine  

The current state of the art for this problem is a ROM (reduced order model). In a ROM, a 
training set exists with pre-computed CFD simulations at various parameters. In the first stage, 
the training set is split into sub-regions using k-means clustering. A singular value 
decomposition (SVD) is computed to reduce the size of the sub-matrices and create a local 
reduced order basis (ROB). In the second stage of the method, a residual minimization problem 
minimizes the error in the original PDE using a linear combination of the basis vectors, which 
gives an estimate of the solution at target hyper parameters in real time. ROMs can be accurate, 
but their implementation is an art, and solutions frequently suffer from highly inaccurate 
predictions and Gibbs’ oscillations near discontinuities, as shown in Figure 1, which represents 
a typical output given by the baseline method for a Burgers’ equation test case. 

 

Figure 1: Gibbs’ oscillations in ROM outputs represented by solid black lines 
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1 .2  O ra c le  

If you optimize for accuracy, a full order simulation can be run at every parameter  of interest. 
The downside is computational expense, so that optimization according to parameters of 
interest frequently becomes infeasible. Also, an oracle optimized for speed would be an 
engineer familiar with the problem with a few CFD simulations at di fferent parameters. The 
engineer can make an educated guess at parameters near the optimum. This is what usually 
happens for very high dimensional CFD problems in engineering. An ideal solution , a true 
oracle, optimized for both accuracy and time, would instantaneously compute accurate results 
for a new parameter that exactly match the results of a full order simulation. 

 

1 .3  Rela ted  Wo rk  

There are alternatives that are budding areas of research. Neural networks have been recently 
used to directly estimate design quantities of interest in a fluid simulation directly from 
parameters, skipping over the simulation stage. This option would be less time intensive, but 
for engineers to trust these kinds of simulations, an autoencoder is an important aspect of the 
solution, because the representation is possible to decode and visualize, and therefore the 
engineer or scientist can be confident that the approximation retains some fidelity to the 
physics of the problem. Other related work applies neural networks to simplified and smooth 
fluids equations that do not include discontinuities. [1] [3] While these are visually appealing 
results, simulation results of interest to engineers often involve discontinuities like shock 
waves or crack propagation, and so a method that cannot predict a shockwave location would 
not be useful from an engineering standpoint.   

 

1 .4  Pro ble m S u mma ry  

Input: Training data from previous CFD simulations at various parameters.  

Output: Approximations of CFD solutions at target parameters.  

Evaluation metrics for success: (1) A sufficiently small root mean squared error between the 
full CFD simulation output and system output at the target parameters and (2) A runtime on 
the order of a reduced order modeling implementation. 

 

2  Dataset  

The Burgers’ equation (1) can be used for testing, and is typically used for testing reduced 
order modeling (ROM) methods. ROM methods that can be successfully applied to predict 
Burgers’ equation solutions, in most circumstances, can be scaled up and applied to the full 
Navier Stokes equations. While the Burgers’ equation test case is a toy problem, and trivial, it 
is useful and is complex enough to translate to much harder problems. It is a one-dimensional 
application of an initial-boundary-value problem that models the movement of a shockwave 
in a fluid. Figure 2 shows the fluid velocity w (or u) vs. location x as a shockwave moves from 
left to right in time across the domain.  

 

           (1) 



 

Figure 2: Typical Burgers’ equation solutions 

 

Several Burgers’ equation analyses were run using a small python code for ROMs. For each 
case, given a specified parameter, 501 snapshots in time were generated. These cases were 
separated into a training set and a validation set represented by Figure 3.  

 

`  

Figure 3: The training set (left two images) and validation set (right image)  

 

3  Model  and Algorithm  
 

The model consists of two parts (1) an autoencoder and (2) an LSTM network. 

 
3 .1  Auto enco der  
 

An autoencoder determines features from the solution inputs in order to compress the data 

prior to being fed into the LSTM network in section 3.2. Without the autoencoder, the full 

Burgers’ solution is input into the LSTM network, and the run time of both the network 

training and testing is unnecessarily increased. With an autoencoder, the information can be 

highly compressed prior to being fed into the LSTM.  

 



 

Figure 4: Autoencoder 
 

The autoencoder only outputs representations of the original inputs, and does not output new 

solutions in time. It only compresses the data.  

 

3 . 2  LS TM  Netw o rk Archi t ec ture  

When searching for possible network configurations, a neural network architecture was found 
that could address the problem of the proposed PDE solving system. The image captioning 
LSTM network from the CS231N homework assignments has nearly the appropriate 
architecture, and therefore that LSTM network was modified to complete the project as shown 
in Figure 5. The idea is similar to video learning methods [2].  

 

Figure 5: LSTM Network Architecture  

 



An image captioning LSTM network takes an image a feature vector and output captions, 
which are “time-dependent” in the sense that each word depends on the previous word. 
Analogously, as shown in Figure 6, the PDE modeling network would take the small set 
hyperparameters (in the Burgers’ equation case, there are only 3) as the feature vector and 
output the full Burgers’ equation solutions (in this case a 1000x501 matrix representing the 
1000 spatial points and at the 501 time steps. Because the setup of the image captioning 
network already includes a fully connected layer from the hyperparameters (features) to the 
hidden layer, my proposed model no longer needs a step (3), because the step is necessarily 
included in the network. 

 

 

Figure 6: Inputs and outputs of image captioning and PDE modeling systems  

 

Since this is a regression problem and not a classification problem, modifications were made 
to the original network – most importantly the loss function. In the original image captioning 
network, a Softmax loss function was employed and a single word was chosen for the next 
word. This would not be acceptable for the PDE solving system, since the loss function should 
be a measure of the total error between the predicted solutions (solution_predict) in Figure 5 
and the original output solutions (solution_output) in Figure 5.  

The inputs will be multiple sets of 1000x501 matrices, each representing a Burgers ’ equation 
solution at specific hyperparameters. The simplest version of this system would need at least 
two points in the dataset, two 1000x501 matrices representing the solutions for two sets of 
two hyperparameters. The validation set for the network would then be a single 
hyperparameters case at a point between the two sets. These inputs are shown in Figure 3.  

Each long short term memory (LSTM unit) from in Figure 5 has a cell diagram represented by 
Figure 7, which has a state c t at time t. The cell is like a memory unit. Access to the memory 
unit for reading or modifying is controlled through sigmoidal gates – the input gate i t, forget 
gate ft and output gate ot. The values of the cells are given by the set of equations (2).  

 

Figure 7: LSTM unit diagram  

 



   (2) 

 

4  Results  

 
4 .1  Auto enco der  

The decoded inputs from the autoencoder reveal that it is unable to learn the locations of the 
discontinuities according to Figures 8. This occurs even though the model converges for both 
the training and validation data. This has implications for the LSTM network, which will also 
be unlikely to learn the locations and therefore will not converge well or accurately predict 
the future. Instead of learning the discontinuity location, the network tends to learn a smooth 
average value for the inputs. For smooth CFD solutions, this may not present an issue, but for 
any flows of engineering interest involving shockwaves, this is a considerable hurdle to 
overcome. Most likely, the network is unable to learn the location of the discontinuity because 
it knows no information about the node locations in space. It does not know that nodes to the 
left or right are even nearby and thus useful for determining the current node value.  

 

 

Figure 8: Sample inputs (left, bold), decoded inputs (middle, thin), and overlay (right) 

 

 

Figure 9: Autoencoder training and validation accuracy loss  



To improve the autoencoder, several methods were explored, including changing the number 

of hidden layers – one, two, and three layer models were tested for both encoding and 

decoding. Also, the number of nodes in the hidden and encoded layers were changed, 

including very small representation sizes like 5 and 15, to large representations equal to the 

size of the input set of 1000 and greater >1500. Regardless of the architecture and number of 

nodes, the autoencoder continued to learn only a smooth approximation of the function.  

 

 

4 . 2  LS TM  Netw o rk  

Because the autoencoder was unable to learn the locations of the discontinuities, the encoded 
representations were not used in the LSTM network. Instead, the full Burgers’ equations 
solutions were input into the LSTM network to test whether the network alone could learn 
how to feed forward in time. The training is slow, as expected, since it is off the original 
design, but the results may reveal more about how to modify the current implementation going 
forward. 

The training history loss for the LSTM network can be plotted to check if the model is 
converging. Figure 10 shows the training history loss given the full dataset, with a learning 
rate of 0.02, a learning rate decay of 0.995, a batch size of 1, and number of epochs equal to 
300. The jumps in loss are expected, since there are only two set of 501 time steps in the 
training set, and each will have its own associated loss with a given network. A successful 
model, however, once fully converged, should no longer show such pronounced jumps. There 
should also be a much smaller loss relative to the initial loss (the loss given random weights). 
From the loss plot alone, it’s possible to see that the network has not yet learned the 
representation well by the final epoch.  

  

 

Figure 10: Training loss history for preliminary model  

 

The network can output both (1) reproductions of the original solutions and (2) predictions for 
new solutions at different hyperparameters, which in this case would be single point  in the 
validation set. Figure 11 shows both the reproduction of the original solutions and the 
prediction for the validation set. The network has not yet been optimized, and it may have 
some implementation errors, so the original solutions are poorly reproduced, and so, 
predictably, are the predictions for the validation set. Most likely, the results are poor for the 
same reasons that the autoencoder is not able to learn the function – it is unable to learn the 
location of the discontinuities, and therefore predicting the future given poor representations 
of the present is an even more difficult problem.  

 



 

Figure 11: The training set (left two images) and the validation set (right image) 

 

Although the current solutions are extremely poor representations of the original solutions, 
there is no reason why a neural network with a different architecture cannot be trained to be 
reasonably accurate. There are many possibilities for why the implementation is not yet 
performing well. The following modifications were attempted, but did not result in 
improvements to the preliminary results: (1) regularization (2) dropout (2) sigmoid 
nonlinearity instead of relu and (4) loss function calculated with square of L2 norm instead of 
L2 norm. Several possibilities will be explored, outlined in the next section, until a predictive 
system is achieved.  

 

5  Alternative Models  and Future Work  

Given the inaccurate predictions of the original model, three additional models are proposed 
for future work – Model 1, Model 2, and Model 3.  

 
5 .1  M o del  1 :  M o re  Hidden  L a y ers  in  LS TM  netwo rk  
 

Model 1 combines encoding with the LSTM network architecture. It is the same as the 

original LSTM network architecture, except additional layers have been added, which are 

equivalent to encoding the LSTM inputs and decoding the LSTM outputs. It ’s possible that 

the LSTM may remember the locations of the discontinuities in time if it is fed correctly 

encoded data.  

 

 

Figure 12: Model 1 diagram 

 

Although additional testing will need to be completed, preliminary results for Model 1 are 

not promising. Model 1 converges much like the original model, producing smooth results 



that do not “see” the discontinuity, much like the initial autoencoder results. Figure 13 shows 

the convergence and results of the initial Model 1 implementation.  

 

 

   
Figure 13: Model 1 convergence (top), sample inputs (left) and decoded outputs (right) 

 
5 .2  M o del  2 :  Lo ca l  R ecept iv e  F ie ld  in  A uto enco d er  

While a convolutional neural network may appear to be an ideal candidate to address this 
problem because it forces nearby nodes to be connected to each other, the inputs in CFD cases 
are not spatially invariant, which is a requirement for a convolution. Figure 14 visually 
demonstrates how a CFD grid differs from an image and is therefore not an ideal candidate for 
a convolution.  

 

  

Figure 14: Spatial variation in a grid of pixels (left) compared to a  CFD grid (right) 

 

Therefore, instead of a convolution, a local receptive layer is proposed to add to the first and 
last hidden layer of the autoencoder as shown in Figure 15. This layer would be insensitive to 
spacing, because the weights in the local receptive layer are free to vary in space, while the 
weights in a convolution are forced to be the same regardless of their location.  



 

Figure 15: Model 2 diagram 

 

5 .3  M o del  3 :  LSTM  Ov er  B o th  Time  a n d  S pa ce  

In this model, instead of feeding the network an entire vector across space, only a few nodes 
(2-3) are fed into the LSTM at a time, as shown in Figure 16 (far left). With this architecture, 
the LSTM memory may “remember” the discontinuity locations as if they were discontinuities 
in time. The downside of this method is that it may suffer from the same problem as a 
convolution since the same weights will be applied at each spatial step within this architecture.  

 

 

Figure 16: Model 3 diagram 

 

6  Conclusions  

While the original model was unsuccessful at predicting future time steps, there is no reason 
why neural networks cannot be used to predict the results of PDEs for which the governing 
equations are known, but time intensive to compute. The data was compressed using an 
autoencoder, but the compression was computed in such a way that important information was 
lost - specifically the discontinuity locations. The newly proposed models may resolve the 
issues encountered in the original model, and if so, many engineering problems of interest to  
industry could be solved efficiently. 
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