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Background 

Imagine yourself looking out the window on a 

commercial flight at the aircraft engine outside. For 

four years, I worked at Honeywell Aerospace as 

product design engineer in a research team 

investigating flutter and forced response issues in 

turbomachinery for aircraft engines. Flutter is an 

aeroelastic issue that can cause near-instantaneous 

and catastrophic part failure. It results from the 

unsteady interaction of a structure prone to vibration 

with an airflow. Blade sections can tear away from a 

rotating component and destroy an engine. Figure 1 

shows British Midland Flight 92, a crash precipitated 

by an aeroelastic issue in 1990. Two blades of the fan 

are missing - torn away during flight. 

Figure 1: British Midland Flight 92 crash due to 

aeroelastic issue 

A commercial jet cruises at about Mach 0.7 (7/10ths 

the speed of sound). However, due to the rotation of 

the gas turbine engine fan and the increasing velocity 

of the air over the surface of the fan blades, a portion 

of the airflow over the fan typically experiences 

supersonic flow conditions and a weak shock wave. 

Such a flow field is called transonic. Phenomena like 

transonic flutter in turbomachinery are predicted and 

mitigated using computational fluid dynamics (CFD), 

specifically fluid-structure interaction modeling.  

A CFD analysis is spatially local and involves 

computing a differential equation on a large number - 

often millions - of discrete points throughout a 

computational domain. Although CFD analyses are a 

vast improvement over wind tunnel or rig testing 

alone, they are computationally expensive, which is 

limiting to the engineer trying to rapidly iterate and 

optimize a product. Optimizing a fan design while 

mitigating flutter risk can take months because a full 

aeroelastic analysis typically takes 5 days even with 

modern computational tools. While methods exist to 

increase the speed of a CFD analysis, no 

commercially available real-time methods accurately 

predict the aeroelastic behavior of turbomachinery in 

the region of transonic stall flutter.  

Introduction 

In reduced order models (ROMs), a dataset already 

exists with numerous full CFD simulations. From 

that dataset, the intention of ROMs is to learn how to 

make good predictions in the future by creating a 

simple model based on what is already known. The 

goal of reduced order modelling is to simplify the 

complex system to run in real time, enabling 

significant CPU time reductions.  

In the first stage of reduced order modeling, the 

solution vectors (snapshots) are split into sub-regions 

defined by local basis vectors using k-means 

clustering, illustrated in Figure 2 below. These 

clusters are formed based on thousands of snapshots 

from full CFD simulations. The k-means algorithm 

identifies where the solution exhibits significantly 

different features so that these vectors can be 

assigned to sub-regions. A singular value 

decomposition (SVD) is computed to reduce the size 

of the matrices and create a local reduced order basis 

(ROB). Using these ROBs, a simulation is modeled 

as a combination of a much smaller number of 

vectors than the number in the original cluster of 

snapshots. In the second stage of the method, a 

residual minimization problem completes the analysis 

and can compute a solution in real time.  

This methodology has been applied at Stanford by 

the Farhat Research Group [11] and applied on a 1D 

Burger’s Equation and an acceleration study of a 

transport aircraft. The potential of the method has 

already been demonstrated for various CFD and 

fluid-structure interaction problems including 

aeroelastic problems [4] and problems involving 

moving shocks. [3] 
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Figure 2: Clustering diagram 

Methods 

The data from one CFD simulation is placed into one 

vector called a snapshot. A matrix A is constructed 

with all pre-computed snapshots along the columns 

of the matrix. I propose a new method for clustering 

the data according to Procedure 1.  

Procedure 1: Row-Column Clustering and Pre-

processing Steps to Create a ROB:  

1. Construct matrix A with pre-computed 

snapshot vectors along columns 

2. Apply k-means clustering to columns of A 

saving column cluster centers and indices  

3. Apply k-means clustering to the rows of 

each submatrix formed by the column 

clusters of A 

4. Perform SVD on submatrices and save the 

desired number of right singular vectors 

The procedure only applies to matrices with single 

variables saved (velocity for example) but can be 

expanded to matrices with multiple CFD variables. 

Additionally, it’s not necessary to run a reduced order 

model to determine whether the ROB constructed via 

the procedure is accurate. A representative vector can 

be chosen from the original snapshot and projected 

onto the ROB built by the procedure. By plotting this 

projection and/or calculating the RMS error between 

the original vector and its projection into the ROB, 

the quality of the reduced order basis can be 

ascertained.   

Procedure 2: Additional Steps for Projection of a 

Representative Snapshot Vector V onto its ROB: 

5. Use column cluster indices to determine 

which column cluster contains the vector V 

6. Use column cluster indices to reorder the 

vector of V to correspond to its submatrix 

7. Use row indices to split vector along each 

row cluster of A 

8. Perform projection within ROB subspace 

9. Use column cluster indices to reorder the 

vector V back into original matrix order 

10. Plot or calculate RMS error between vector 

and its projection 

The implementation of k-means clustering was done 

in python using cluster.k_means contained in the 

sklearn library. [8] K-means clustering was 

implemented twice on the matrix, once on the 

columns, followed by the rows. Because all terms of 

both the rows and columns of the original matrix are 

rearranged to construct the submatrices, the method 

involves considerable bookkeeping, but is otherwise 

simply an application of k-means twice. It could be 

categorized as a form of biclustering.  

To emphasize, the end goal of this procedure is not to 

analyze the dataset. The procedure is a starting point. 

This pre-processes the data to create an improved 

reduced order basis that models a complex CFD 

simulation, which you can use to run previously 

computationally expensive simulations in real time - 

for the purpose of either better understanding of the 

parameters or optimization.  

Related Work 

Biclustering and co-clustering are well known 

procedures for a variety of machine learning 

applications, most notably gene expression. [9] Other 

work has combined k-means clustering with linear 

discriminant analysis. [2] However, biclustering 

algorithms do not appear in literature that output 

center vectors like those output by the row-column k-

means procedure described in the methods section. 

And these mean vectors are required to complete the 

reduced order model computation. 

Also, different forms of domain decomposition are 

common in fluid mechanics. The domain is often 

split along mesh lines evenly for parallel computing. 

Typically the split for a given domain is determined 

manually by the engineer considering the particulars 

of a given design. [6] In this case, what makes it 

possible to compute sub-domains more generally and 

independent of mesh is that this procedure is not 

computing full CFD solutions along mesh lines. The 

results of CFD simulations are givens. ROMs are 

computed "off the grid." Therefore, there's more 

freedom in how to create sub-domains, making the 

application of machine learning algorithms for 

domain decomposition for ROMs full of possibilities.   

In sum, k-means has been used to cluster subdomains 

[10] and it has been used to cluster snapshots [1], but 

little or no research has been done to combine the 

benefits of the two.  
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Importantly, one problem encountered consistently in 

reduced order modeling for CFD is that shock waves 

are not well modeled by ROBs. A shock wave occurs 

when a wave moves faster than the local speed of 

sound. It is characterized by an abrupt, nearly 

discontinuous change in pressure. Therefore, SVD 

implementations suffer from unphysical Gibbs’ 

oscillations near the shock wave discontinuity. [5] 

Capturing the discontinuity and reducing the Gibbs’ 

oscillations is difficult without a full order model in 

the region of the shock. Some [7] have applied 

domain decomposition, but they resort to 

implementing a full order model in the region of the 

shock in order to resolve it.  

While initially the intention of this project was to 

research and implement adaptive clustering 

algorithms, I had an interest in clustering along the 

rows of the CFD domain. When the susceptibility of 

ROMs to Gibbs’ oscillations became apparent, the 

goal of the project was changed. The row-column 

clustering procedure was conceived as a form of 

domain decomposition in order to improve the 

modeling the shock wave discontinuity. Figures 3 

and 4 demonstrate how the shock wave splits the 

solution into distinct domains of supersonic and 

subsonic flow. 

 

Figure 3: Transonic flow region around an airfoil 

 

Figure 4: Shock wave preceding a blunt leading edge 

in supersonic flow 

Dataset 1 and Features 

The row-column clustering procedure was applied to 

two test cases: a simple 1D Burger’s equation and an 

oscillating airfoil case.  

For a full three-dimensional CFD solution, the data 

could contain millions of points. At each point in the 

mesh, many variables are saved. If 1000 snapshots 

are generated, each containing the variables for all 

points in the mesh for an analysis, this creates a very 

large matrix to analyze. Therefore, the first step is to 

find a simplified problem that can be used for testing, 

but implement it in a way that allows it to be scaled. 

The solution of a one-dimensional Burgers’ equation 

is such a case.  

 

Figure 5: Burger’s equation solutions for test case 

The one-dimensional Burger’s equation test case is a 

fluids application of an initial-boundary-value 

problem (IBVP) that models the movement of a 

shock wave. Figure 5 shows the velocity w vs. 

location x as a shock wave moves from left to right in 

time across the domain. Working with Matt Zahr in 

the Farhat research group, I obtained a Burger’s 

equation dataset and a python code that runs the one-

dimension Burger’s problem and implements column 

clustering using the cluster.k_means function from 

the python library sklearn. There are 1000 points in 

the mesh, and one variable, velocity, is saved per 

coordinate, x. I used a set of 1000 snapshots. Because 

the problem is much simpler than a full Navier-

Stokes simulation, 1000’s of snapshots can be 

generated in a few minutes. Each column represents a 

different time or different initial or boundary 

conditions. 

Figures 6 and 7 show the results for a simple column-

only clustering procedure that splits the data into two 

clusters. Figure 6 shows the two cluster centers 

generated for the snapshots. A look back at Figure 3 

reveals that the clustering has captured two patterns 

that characterize the snapshots in time. Figure 7 

shows the results calculated for a representative 

snapshot and the vector projection of that snapshot 

onto the first basis.  
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Figure 6: Cluster Centers 

 

Figure 7: Solution w and its vector projection 

Dataset 2 and Features 

The second test case for implementing the row-

column clustering code was a 2D unsteady CFD 

solution of an airfoil twisting and flexing in time. A 

2D airfoil simulation models a slice of a full 3D CFD 

simulation of, for example, a wing or turbomachinery 

blade. The twisting and flexing of the airfoil in time 

is analogous to the twisting and flexing of a vibrating 

turbomachinery blade. Figure 8 shows the response 

of a fluid to the unsteady motion of a blade over time. 

Figure 9 shows a representative snapshot of this 

dataset.  

 

Figure 8: Flow evolution over time as airfoil blade 

section twists and flexes 

 

Figure 9: A single 2D CFD simulation snapshot 

Results 

The implementation of row-column clustering was 

found to substantially improve the quality of the 

ROBs for the Burger’s equation in the proximity of 

the shock wave discontinuity. Figure 10 shows the 

damping of the Gibbs’ oscillations for the case of a 

10 column clusters on the data with an increasing a 

number of row clusters from 1 (column-only 

clustering case) to 10 row clusters.  

 

Figure 10: Reduction of Gibbs’ oscillations due to 

row-column clustering 

Additionally, because these oscillations are the 

primary source of the error in the ROB (represented 

by the RMS difference between a representative 

vector and its projection onto the ROB), the error is 

greatly reduced by applying row-column clustering. 

Figure 11 illustrates the reduction in RMS error as 

the number of column clusters are increased, given a 

fixed number of row clusters. Figure 12 illustrates the 

reduction in RMS error as the number of row clusters 

is increased, given a fixed number of column 

clusters. Row-column clustering is clearly an 

improvement for both conditions.  

 

Figure 11: RMS error reduction with increasing 

column clusters given fixed number of row clusters 



Tina White - CS229 Final Report  12/11/2015 

 

Figure 12: RMS error reduction with increasing row 

clusters given fixed number of column clusters 

Additionally, row column clustering was run on the 

second dataset. Because of the 2D nature of this type 

of simulation, the row clustering for a given cluster 

was possible to visualize. Figure 13 visualizes the 

row clusters, colored by number, of the particular 

column cluster for a representative vector. This 

example in particular may show a case of overfitting, 

given the multiple clusters used to model a single 

vortex, yet it also demonstrates that the clusters are 

partially aligned with flow structures. In this plot, for 

example, typical flow structures like the free stream, 

vortices, boundary layer, and stagnation point are 

captured by the clustering. 

 

Figure 13: Row clusters colored by number 

Finally, a representative snapshot and its projection 

onto its row-column clustered ROBs were visualized. 

Figure 14 shows the representative snapshot, its 

column-only projection and its row-column 

projection. While there is only slight visual 

improvement in the modeling, this is to be expected 

because the dataset does not contain any shock 

waves. Future work will involve obtaining additional 

datasets and testing row-column clustering on 2D and 

3D datasets with shock waves. Most likely, the 

benefit was slight also because multiple variables are 

included in this snapshot matrix, and the procedure 

has not yet been expanded to accommodate this.  

 

 

Figure 14: A representative snapshot, its column-only 

projection, and its row-column projection 

Conclusions 

The main achievement of this project has been to 

establish a proof of concept for future work in 

applying machine learning algorithms like k-means 

to both snapshot clustering and domain 

decomposition for reduced order modeling of 

computational fluid dynamics results. The ability of 

the row-column clustering method to capture shock 

waves is a novel contribution. While results are 

currently limited to the simple 1D Burger’s equation 

case, the method can be implemented easily on far 

more complex models.  

The potential implications are many. CFD for 

transonic and supersonic flow is used in the design 

process of many aerospace products, for example, 

aircraft, engines, and spacecraft. This improvement 

can have wade ranging impact across the industry. 

Future Work 

Next quarter I will continue the project as an 

independent study course with the Farhat Research 

Group, and potentially submit the work to NIPS. K-

means is a very rough form of domain decomposition 

for CFD solutions, so there is much room for 

improvement. One limitation is that this 

implementation of k-means row-column clustering 

does not take into account the locations of the 

features in actual space. One proposed improvement 

is to weight k-means according to the spatial 

locations of the points. 

Also, the row-column clustering procedure must be 

expanded to accommodate multiple variable types in 

the original snapshot matrix.  
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